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ABSTRACT

This report discusses continuations of the work reported in Special
Scientific Report No. 1 on this same contract. Part 1 (Threshold Logic)
consists of a comprehensive survey of threshold logic, a geometric result
relevant to estimating the number of threshold functions, generalizations and
strengthening of known bounds on the logical capabilities of threshold gate
networks, computer-aided work on the realization of arbitrary functions by
networks of three-input majority gates (including a list of realizations for
every type of four-argument switching function), and a comparison of two
methods for synthesis of very large threshold gates: the well-known Bayesian
approach and a geometric alternative. The latter method is shown to be
preferable.

Part 2 (Reliability of Switching Networks) presents a survey of several
important schemes for introducing redundancy into a combinational network
for the improvement of reliability — comparisons are made with the recursive
triangle system (see Special Scientific Report No. 1); some extensions of
the previous analyses of recursive triangles (specifically, more general
results on the "and" function, study of a nonsymmetric function, ABvCD, and
generalization to the "nor" function); and initial results on the incorpora-
tion of memory and feedback to allow the use of fewer basic gates in a time-
shared fashion.
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PREFACE

The two major parts of this report cover the two branches of our in-

vestigation of the theory of adjustable switching networks; Threshold

Logic and Reliability of Switching Networks. Each part thoroughly

summarizes and analyzes the research performed during the last year.

Research performed in the first year of the contract has been reported

in Special Scientific Report No. 1; the present report should be considered

a continuation of the latter, where definitions, motivations, his-

torical background, etc., can be found. Work on the theory of adjustable

switching networks is continuing.

A cumulative list of the Scientific Reports issued on this contract

follows:
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Scientific
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Report

Report

Report

Report

Report

Report

Report

Winder, R. 0., "More About Threshold Logic",
AFCRL 702, July 14, 1961.

Brzozowski, J. A.,, "Reliability of Triangular
Switching Networks with Intermittent Failures",
AFCRL 785, August 14, 1961,

Levy, S. Y., "Triangular Rectifier Networks",
AFCRL 786, August 23, 1961.

Miiller, H. S., Winder, R. 0., "Majority Logic
by Geometric Methods', AFCRL 792, July 13, 1961.

Amarel, S., Cooke, G., Winder, R. O., '"Majority
Gate Networks'", AFCRL 793, August 14, 1961.

Amarel, S., Levy, S. Y., Winder, R. O., "Theory
of Adjustable Switching Networks', AFCRL-62-318,
April 30, 1962.

Winder, R. O., "Threshold Logic in Artificial
Intelligence", AFCRL-63-6, November 15, 1962.
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I. INTRODUCTION

Part 1 of Special Scientific Report No. 2 consists of several sections:
Section II and Section VII (References, pg.39 ) constitute a comprehensive
survey of threshold logic. Sections III, IV, V, and VI describe the present
state of several lines of investigation under this contract. (Whereas at the
end of the first year of this contract several primary lines of investigation
had terminated, so that a final-type report — Special Scientific Report No. 1,
Part 1 — was written, this is not the case this year.) The Appendix of Part 1
(Section VIII) is a listing of networks which resulted from the investigations
reported in Section V.

Threshold logic, especially as reported in Special Scientific Report
No. 1, has been primarily motivated by an interest in computer applications
- design with threshold gates. Recently, the interesting possibilities of a
second major field of application have become apparent: To define complicated
decision functions of many variables, students of artificial intelligence
almost invariably have used the simple and natural idea of "linear separation'
— their basic functions have turned out to be threshold functions. It seems
that both biological and engineering reasons lie behind this: First, the
psycho-physiological theories of learning and perception (e.g., Hebb) have
employed theories of neural nets (McCulloch and Pitts); these neural models
are, in fact, typical threshold gates. Second, investigators of self-adjust-

ing switching devices have found neuron-like elements to be easily controllable.

Threshold logic has much to offer students of artificial intelligence.
Furthermore, an increased interaction will surely produce interesting new
developments in threshold logic. For example, in Section VI we consider an
important common area between the fields: the synthesis of a single threshold
gate for purposes of pattern recognition. The frequently used probabilistic
approach to the problem is outlined, its main shortcomings discussed, and an
alternative given, which arises from the switching theoretic point of view.

It is shown that the probabilistic results are always worse than the crudest

form of the switching theoretic results.




Section II provides a general survey of the relevant sections of thres-
hold logic. A guide to the literature is provided, specifically slanted toward
the student of artificial intelligence. This is an attempt to stimulate the
interest of such people in threshold logic, to make the literature easily

accessible, and to encourage their continued attentionm.

The problem 6f estimating the number of threshold functions, out of all
switching functions of a given number of arguments, is an important one. It
can be shown equivalent (see Special Scientific Report No. 1) to the geometric
problem of partitioning Euclidean n-space by a certain collection of hyper-
planes. In connection with this approach, Section III reports an important
theoretical step toward a resolution of the problem. Work on application of

the result continues.

In Section IV a generalization of earlier estimates (or more specifically,
upper bounds) is made. This generalization gives upper bounds on the number
of incompletely specified threshold functions: Suppose m of the possible 2"
input combinations to a gate have given specified outputs associated with them.
Out of the entirety of 2" such incompletely specified functions, averaging
over the %n)choices of the m points, less than m" will be realizable with a
single threshold gate. This, for example, puts severe restrictions on the
logical capabilities of a network such as the Perceptron, where adaptation
is possible on only one threshold gate. Section IV also strengthens an
earlier result of Cameron: The random function of n arguments will require
more than V 2(n+15//x: threshold gates, interconnected in a network, for
realization. A bound for the likely size of networks for realization of

incompletely specified functions is also obtained.

Section V reports computer-aided investigations of the problem of realiz-
ing arbitrary functions with networks of simple three-input majority gates.
Results are incomplete and inconclusive; much work remains to be done. An
outcome of the experimentation, given in the Appendix (Section VIII), is a set
of threshold gate network realizations for each type of four-argument switching

function — the networks have been proved minimal in their number of stages.
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The ideas of Section VI, mentioned sbove, have introduced two new lines
of investigation, both of which will be studied in the third year of this
contract, The first concerns basic limitations of the Bayesian approach to
threshold gate design. The limitations stem from certain basic "independence
assumptions"”, necessary for the Bayesian synthesis procedure. The first
theorem of Section VI states that if a threshold function with equiprobable
input combinations satisfies the independence assumptions, it must be a trivial
function. A strengthening of this result is now being investigated: Aany
function, with any input distribution, that satisfies the independence
assumptions, must be trivial. In other words, the Bayesian approach cannot
be applied to nontrivial functions with any guarantee of success. Important
consequences for artificial intelligence, and specifically for adaptive
systems of threshold gates, are under study., The second new line of inves-
tigation concerns the switching theoretic countersuggestion to the Bayesian
synthesis procedure, outlined in Section VI; it will also receive more
attention. The development of heuristic programs for the synthesis of
threshold gate networks is also contemplated.



II. SURVEY OF THRESHOLD LOGIC
by R. 0. Winder

Threshold logic areas of interest to investigators of artificial intelli-
gence are outlined, and some problems whose solutions would be significant in
artificial intelligence are suggested in this section.

Most of the threshold logic literature deals with one or more of the follow-
ing three areas: Conditions which functions must satisfy to be threshold functions,
algorithms for determining the existence and nature of realizations, and methods
(heuristic) for synthesizing networks built from threshold gates, often, in partic-
ular, from three-input majority gates (AB + AC + BC). 1In the following we
discuss the large body of simple transformations and other properties known, then
the necessary conditions, one-element test-synthesis, network synthesis, and
finally the more important miscellaneous results, (see [Winder-3] for an earlier

survey).
A. SIMPLE PROPERTIES

The following are typical simple facts about threshold functions:
1. Realizing weights and threshold are not unique.
2  All threshold functions can be realized with integral weights and
threshold.
3. Any pair of (unequal) numbers (i.e., 0 and 1, -1 and +1, etc.) can
be used as the numerical equivalents of the switching variables in
order to define threshold functions. (The same weights can be used
in different systems; the appropriate thresholds are easily calculated.)
4. Given a threshold function £, functions derived from f by permuting or
complementing arguments, or by dualizing or complementing f, or any
combination of these, are also threshold functions. (Again, appro-
priate transformation rules are easy to define.)
A general treatment of these, and most of the topics mentioned below, can
be found in the papers [Elgot], [Gabelman-1], [Muroga-2, 5], and [Winder-1,
4). These are relatively comprehensive papers, with much duplication of the
basic material. ([Coates-Lewis] ~lso covers a wide range of material, but with

a specific slant toward the test-synthesis problem.
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B. NECESSARY CONDITIONS

The simplest condition which all threshold functions must meet is
unateness* discussed originally in [Muroga-1], [McNaughton], and [Paull-
McCluskey]. [Paull-McCluskey], [Winder-1], and [Muroga-2] generalize this
condition, obtaining an infinite family of necessary conditions: 1l-mono-

tonicity (equivalent to unateness), 2-monotonicity, etc. A function satis-

fying all of these conditions is completely monotonic. [Winder-1, 4] give
the most complete treatment of these ideas, including an important function
due to E. F. Moore of Bell Laboratories -- a twelve-argument function which
is completely monotonic, but is not a threshold function.

Because complete monotonicity fails to characterize threshold functions,
this idea in turn is generalized in various ways in [Elgot] and [Gabelman-1].
[Winder-2, 4] discusses these generalizations further, settling some questions
left unanswered in [Elgot] and [Elgot-Muroga], and concentrating on a second
infinite family of necessary conditions: 2-assummability (equivalent to
complete monotonicity), 3-assummability, etc. A function satisfying all of
these conditions is proved in [Elgot] to be a threshold function. This
necessary and sufficient condition was published about the same time in
[Chow-1]. It is discussed in terms of convex sets in [Highleyman] and [Gabelman-2].

These various necessary conditions have obvious importance in artificial
intelligence. Even for sparsely specified functions (where most inputs do not
have outputs specified) of many arguments, functions can often be shown to be
nonthreshold functions by simple observations. More work is needed, however,
to adapt the ideas more.specifically to the case of sparse specification, many

inputs.

*#A function is unate when it can be expressed by a Boolean expression in
which each variable appears uniformly: everywhere with negation or every-

where without.




C. TEST-SYNTHESIS

The question: "Is a given function a threshold function,and if it is, what
weight and theshold assignments realize it?" is easily seen to be equivalent to
the consistency and solution of a certain system of linear inequalities I, on
the weights and threshold as "unknowns" -- [McNaughton]. If the function has n
arguments, I contains 2" inequalities. The theory of k-monotonicities can be
used to reduce this system to manageable proportions =-- in various forms, most
of the papers to be mentioned in this section make use of ideas equivalent to
at least l-monotonicity, and often 2-monotonicity. The problem of the equivalence
of these reduced systems I' with the original is discussed in [Winder-1, 4].

Many different methods of solution for I' have been proposed. Algebraic solution,
which involves successive elimination of unknowns and yields a specification of
all solutions, is discussed in [Elgot] and [Winder-1, 4].

The important idea of solving I' by linear programming is discussed in
[Minnick], [Stram-1], [Muroga-1], and [Einhorn]. Integers are usually obtained
under a condition that their sum (absolute values) be minimum; by a technical
device, integer programming has been avoidable except for some specially con-
structed examples of E. F. Moore and [Winder-2, 4] (thus settling the other open
problem of [Elgot-Muroga]). A game theoretic approach to the solution of I' is
discussed in [Akers-1]. Both the linear programming and game theoretic approaches
produce just one realization, or else prove that there are nome.

The procedure of [Coates-Lewis] and [Coates-Kirchner-Lewis] is a specialized
algorithm which algebraically produces a single solution, or proves that there are
none. A geometric, heuristic procedure is described in [Stram-1, 2]. 1In
[Dadda~1, 2] methods suitable for small n are given. In [Varshavskii-1l] a
fallacious procedure is summarized.

The question of obtaining minimal integral realizations (the sum of absolute
values of weights and threshold minimized) is very nicely solved in [Gabelman-1,

3 ; the procedure is refined and rigorously established in [Winder-4]. Synthesis
when the function is incompletely specified is treated in [Winder-1, 4] (alge-
braically, with not too many inputs unspecified) and in [Singleton] (by matrices,
with not too many inputs specified). The intermediate problem has obvious import-
ance in artificial intelligence and in character recognition; the ideas described

in [Winder-6] (and section VI of this report) may provide a start in this direction.
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All methods discussed above (except those of [Winder-6]) are switching-
theory oriented, in the sense that they work exactly, and are not feasible when
the number of arguments becomes large (over 20, say). It is likely that arti-
ficial intelligence motivations will soon be producing some useful results for

large n (and for largely unspecified functions).
D. NETWORKS

The question of synthesizing a given function in a network of threshold
gates is a typically difficult switching theoretic problem. (A single threshold
gate realizes a threshold function; a network of threshold gates corresponds to
a composition of threshold functions.) It has been considered under various
constraints: In computer design applications, tolerance considerations dras-
tically limit the number of inputs that can be allowed. [Muroga-4)] is a general
discussion of this; [Muroga-5] goes into important details. There are several
pavers on synthesis by networks of three-input majority gates (AB + AC + BC),
the simplest threshold functions beyond the conventional NOT, OR, AND, and their
variants. The methods can be divided according to the means of function repre-
sentation: Working algebrajcally, [Lindaman-1,2], [Cohn-Lindaman], and
[Akers-2] discuss various transformations, analogous to the ordinary Boolean
transformations, which may be helpful in synthesis. [Winder-4] gives an axiomatic
treatment which may be helpful in synthesis. [Winder-4] gives an axiomatic
treatment which may be more useful in this context than that of [Cohn-Lindaman].
A geometric approach is described in [Miillet-Winder],and results on all four-
argument functions are reported in [Winder-5] (and in Section VI of this report).
(Akers-3] employs truth tables in interesting fashion.

The synthesis of a specific class of functions -- symmetric functions -- has
been treated in [Muroga-2], [Minnick], and [Kautz].

A geometric approach to the unrestricted problem is described in [Winder-2,
4], where the question of determining whether a given function can be realized
using just two threshold gates is answered. An algebraic method, where con-
straints on the magnitude of the threshold can be made conveniently, is given in
[Lewis-Coates]). [Varshavskii-2] summarizes an interesting construction, and gives
a startling (but false, see below) "theorem'" that a function of n arguments can

always be realized in a network of n + 1 threshold gates. Many of the one-element



test-synthesis procedures discussed above go on, when a function is shown to be
nonthreshold, to produce a network in heuristic fashion. Typically, several
fragmentary functions are OR'ed together. A heuristic modification of linear
programming is used in [Minnick] to produce a table of network realizations for
all (classes of) 4-argument functions.

The network synthesis 1s just beginning, and so far is restrained to very
small n (less than 10). Perhaps the most promising approach for the (heuristic)
design of large-n two-level networks (several "upper-level' gates feeding a
single "output gate'", as in the Perceptron, etc.) lies in the methods of
[Winder-2, 4], where failures of the k-monotonicity tests are used to specify
appropriate upper-level gates -- i.e., each upper gate can make the final decision
as a threshold function. (Incidentally, the conjecture that the output gate can
always be taken as a simple many-input majority gate, still yielding optimal

networks, can be disproved by counterexample.)
E. OTHER MAJOR SUBJECTS

The parameters of [Chow-2] are used implicitly in Section VI. Besides
their practical use, the paper cited opens up a theoretically very interesting
possibility that threshold functions may be characterizable by their parameters
[the m(fxi) and m(f)].

A large number of "functional properties' of threshold functions, dealing
with various combinations of functions, chains of functions obtained by varying
threshold, duality relations, classification by prime implicants, and similar
ideas, are treated in [Muroga-2, 3, 6], [Elgot], and [Gabelman-1]. These ideas
are rather of theoretical than practical interest, and at present do not appear
to have much bearing on artificial intelligence.

Rn, the number of threshold functions of n arguments, has been shown to
be bounded above ([Muroga-2] [Winder-1 4], [Cameron]) and below ([Goto-
Takahasi], [Muroga-2, 6]) as follows:

2 oM

2
0.33n <Rn<2n <<2° (@>1),

2
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n
where 22 is the total number of switching functions of n arguments. Thus

threshold functions become a vanishingly small proportion of all functioms,

as n increases. [This suggests that the often-used idea of randomly chosen
upper-level threshold gates in a 2-level network is likely to require the output
gate to realize a nonthreshold function. A rational procedure, such as that
mentioned in the section on networks, is much more likely to work with fewer
upper-level gates. In particular, tentative ideas indicate that the output
gate, not the upper-level gates, should be partially specified at the outset
(for example, the weights' signs, and possibly their relative absolute magni-
tudes, might be determined on a heuristic or random basis); then existing
methods, as mentioned above, can be used to specify appropriate upper-level
gates (and the output gate), even for very sparsely specified, many-input
functions. (Modifications for iterative synthesis would be required.) As
noted earlier, the best networks are obtained by allowing the output gate to

be as complicated as is needed.] In [Cameron] it is shown, using the upper
bound, that networks to realize given n-argument functions will for most func-
tions require exponentially many threshold gates -- something like 2n/3.

Bounds on the size of integral weights that will be required for some functions
are found in [Myhill-Kautz] and [Huroga-Sj.

In Section IV of this report, generalizations of these results are made:
Bounds on the number of imcompletely specified functions realizable by a
single threshold gate are obtained, and are applied to indicate fundamental
limitations of the Perceptron-Pappa-Pandemonium tyg:lnetworks of threshold

/ 5
gates. Cameron's bound, 2" 3, is improved to L 22, In Section III a
n

theoretical geometric result is obtained which may lead to further improvement
of the various bounds.

The classification sand enumeration of classes, for threshold functionms,
have been studied in [Winder-1,4) and [Muroga-1]. Tables listing representa-
tives of all six-argument threshold functions, with minimum integral reali-
zations, are to be found in [Winder-4] and [Muroga-6). A more efficient
classification scheme has recently been described in [Goto-Takahasi]: relevant
results are in [Muroga-5].

Two variants of threshold logic are discussed in [Ercoli-Mercurio] and
[Hotz].




II1I. PARTITIONS OF N-SPACE BY HYPERPLANES
by R. 0. Winder

The following problem has arisen in the field of switching theory
(i.e., computer-motivated mathematical logic): Given a well-defined set of
m (n-1)-dimensional linear subspaces in n-dimensional Euclidean space, all
passing through some given point, to find the number of regions into which
the n-space is divided by the m '"hyperplanes'. We will develop below a

formula for this quantity which seems to be of general mathematical interest.

The best result to date has been a formula for the special case of
the hyperplanes lying in ''general position'" (in a sense which will be made
explicit later). The hyperplanes of the original problem failed to satisfy
this condition -- the formula provided, then, an upper bound on the desired
quantity. The formula is ('B" for '"bound')

n-]

m m-1 ¢))

Re2), (5

See* [Winder-1], [Cameron]. 1=0
Definition: A set of k (n-1)-dimensional 'hyperplanes" in n-di-
mensional Euclidean space, all planes passing through some given
point, is nondegenerate if the intersection (a linear subspace of
generally lower Jimension) has dimension n-k. If the dimension is

of different parity than n-k, the set is odd-degenerate; if the

dimension has the same parity as n-k, even-degenerate.

The term ''general position'", used above, is defined by the property

that every set of n or fewer of the given m planes should be nondegenerate.

Theorem: The number of regions into which m hyperplanes, all
passing through some common point, divide n-space is equal to the
number of distinct even-degenerate subsets of the given m planes
minus the number of distinct odd-degenerate subsets. (The empty

subset is included and is counted as even-degenerate.)

Example: Suppose that the set of m planes are in general position.
Then the number of regions is

*D. T. Perkins, D, G. Willis, and E. A. Whitmore, of Lockheed (Missiles and
Space Division), have not published their early results on this problem.

10
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L@ (- (B () (1) @

because each subset of n or fewer hyperplanes, counted in the first (n+l)

terms, are nondegenerate, and so even-degenerate, and thus are counted positively
in the sum. All subsets of more than n hyperplanes have just a point in common,
i.e., their intersection has dimension 0. Thus we have the alternating signs

for -l.: remainder of the expression. But

i (T) CIY™H o (i - o 3)
i=0

Adding corresponding terms in (2) and (3), we have

N = 2[(:1) + (n'f3) + (nTS) + .o ] (%)
where the last term is () or ('0“) . But
() (D)

so substituting in (4) (except for (:) if it's present), we obtain B: as
given in (1).

Proof of theorem: We proceed by induction on m. For m=1, there are :
two subgsets -- the empty set and the given hyperplane, each of which are trivially
nondegenerate, and so even-degenerate. Thus the theorem would predict two

regions, which is,of course,correct.

Supposing the theorem verified for sets of m or fewer hyperplanes, we
consider a set of (w+l) distinct hyperplanes (m > 1), Ho, HI’ ceey Hm, all
passing through some common point. Suppose we denote the number of regions that

they divide n-space into by 1

an
#{no, Hy, oo Hm} .

We now select one of the planes, say Ho, and will prove the following:

11




n
1 ,
#{uo, Hy, ooes Hmf = -FrL-i H, Hy, ..., Hmf

n-1
| )
+#{“ﬂv“ﬁr'"'%%j (6)

where HOHi represents the intersection of the two planes, and the right-hand
expression of (6) represents a subdivision of the hyperplane Ho (an (n-1)-di-
mensional Euclidean space in its own right) by its intersections with the other
planes (since the hyperplanes are distinct, and since no pair of hyperplanes

is parallel, the intersections HH, are, indeed, (n-2)-dimensional "hyperplanes"
in HO). Although the hyperplanes Ho, HI’ ceey %m are distinct, the entities
HOHI’ HOHZ’ oy Hoﬁm may not be; when we enclose them by brackets we are
thinking of the set, which may then have less than m members.

Justification of (6) will not be completely rigorous; we rely on the
reader's intuition: Consider n-space as partitioned by the hyperplanes

Hl’ H2, ooy Hm. When a new hyperplane H, is introduced, how many regions are

affected? Clearly,only those into which 30 enters, and enters to the extent
that it has an (n-1)-dimensional intersection with them. Each such region is
clearly cut into two pieces, since the regions are simply connected (they are
bounded by hyperplanes) and the separation is by a hyperplane. Thus the new
number of regions is just the old, plus the number of (n-1)-dimensional regions
into which “0 is cut by intersections with the original hyperplanes. (To say

it slightly differently: Each piece into which HO is cut acts as a divider in
some one of the original regions, thus adding one region to the previous total.)

This establishes (6).

Now for the induction step: By hypothesis, the middle term of (6) is
equal to the number of even-degenerate subsets of Hl’ oeey Hm minus the -
number of odd-degenerate subsets. This accounts for all subsets of HO’HI""’Hmf
that don't involve HO; the induction step will be complete if we can show that .
the number of even-degenerate subsets containing Ho, minus the number of odd-
degenerate subsets containing Hy, equals the final term in (6). But by hypothesis,

the final term is equal to the number of even-degenerate subsets of

12
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{Holl], ceey l-lollm} , in HO’ minus the number of odd-degenerate subsets.

Suppose we number the Hi so that HOHI’ Ho}lz, ceny HOHP are distinct, while
each of Hollrl, ceey Hollm is a duplicate of one of the first p. Now consider

any subset HOHi y HOHi y esey HOHI'. } where each ij < p. The intersection
2 k

1
(“oHH) (“0312) (HOHik) = Houiluiz uik. )

Note that the degeneracy (odd or even) of the subset HH , ..., H.H
0 i] 0 i in

(n-1)-space is the same as the degeneracy of the subset {HO’Hi ,].-li yeeey Hi

1 2 k
in the original n-space (because in the latter case the spatial dimension is

one greater, and the number of planes is one greater, while the intersection --
and its dimension -- remains unchanged, by (7)). We have proved this equivalence
for all subsets of {HOHI’ eeoy Ho}lp} since here there are no dupli:ates. Thus,
the right-hand side of (6) equals the number of even-degenerate subsets of
{HO’HI’ coeny l-lm} except those containing Ho and at least one of Hp+l""’ Hm,

minus the number of odd-degenerate subsets with the same exception. If we can

show that the sum corresponding to this exception is zero, the proof will be

complete.
So consgider Hp+l' By assumption, for some r < p
HOH o1 = Hol-lr . (8)

Consider all subsets of {HO’ Hl’ cees Hm}which contain H, and H but

0 pti
none of Hp-l-2’ cesy Hm' They come in pairs; for cach such subset containing

Hr there is one identical except lacking Hr. Consider the intersections

13



corresponding to such a pair -- call them Ho i up-H and HO bi nr an .oom
for some "product" of hyperplanes) Multiplying (i.e.,intersecting) each side

of (8) by II we see that the intersections are equal:

H

HyTH,, = HyTH B. 9)

Thus the dimensions are equal. And since the number of hyperplanes in the
corresponding subsets differ by one (Hr)’ one of the asubsets must be even-
degenerate, and the other odd-degenerate. Because of this cancellation, we can
strengthen the next-to-last sentence of the previous paragraph: The right side
of (6) equals the number of even-degenerate subsets of { Ho, HI’ coay Hm}
except those containing Ho and at least one of H

pt2

of odd-degenerate subsets with the same exception.

s sesy H , minus the number
m

Now we repeat the argument with , then again with , and so on,

Ho+2 Fpt3
until the exceptions are removed: The left side of (6) equals the right side
-

of (6), which equals the number of even-degenerate subsets of { HO’Hi”"’ HmjL

minus the number of odd-degenerate subsets, QED.

14
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IV. BOUNDS ON THRESHOLD GATE REALIZABILITY
by R. O. Winder

It is well known* [Winder-1], [Cameron] that the number of threshold
functions of n arguments is less than

3
B = 2Z (2"-1) .
n i
i=o
Using this bound, Cameron [op cit] shows that the number of n-argument functions
realizable by a network of at most k threshold gates is (asymptotically) less
than 2k3 . As Cameron pointed out, this implies that at least one switching
function of n arguments (and probably most of them) requires more than 2u/3
threshold gates for realization. The purpose of this note is to generalize
these results to functions incompletely specified; an improvement in the

n/3

asymptotic bound 2 will also be obtained. Applications in character recog-

nition and self-organizing systems are discussed,

The basic bound Bn is derived from the following basic lemma (see
[Cameron] for a good discussion of its proof — the proof in [Winder-4] is
virtually identical, but less well explained):

Lemma : If m hyperplanes are passed through the origin of an (n+1)-

dimensional Euclidean space, the space is divided into a number of

n
P = 2 m-1
n i)
i=o0
The bound Bn is then obtained by considering an (nt+i1)-dimensional

regions at most

"realization space" — the space consisting of points & = (ao, 815 e, an),
each of which represents the realization of some threshold function (a bias

and n weights). (We assume a * 1 logic.) By taking all possible choices of
sign, we consider 2t hyperplanes

ao * al + 82 + ... 2 an = 0,

Two points in the realization space represent the same function if and only

*o. T. Perkins, D. G. Willis, and E. A. Whitmore, of Lockheed (Missiles and Space
Division), have not published their early results on this problem.
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if they are not separated by any of these hyperplanes. Thus the regions,
with boundaries defined by these hyperplanes, correspond one-to-one with

threshold functions. Thus setting m = 2" in the lemma gives Bn.

Now: Suppose we select exactly m out of the 2" possible input combi-
nations. How many switching functions, no two of which agree in value on
all m of these points, can be realized by a single threshold gate? Clearly,
by the same argument, there are at most B:. (Because the m points correspond
to m of the hyperplanes, and again, we are asking how many regions the reali-
zation space is divided into, here by m hyperplanes.)

Bounds on B: are easily obtained:

- ‘I _l !
) ()= () e i v e ———<,..-,,;‘...<...-,,]
<2 m-1 l+—+ nl + 3 ..
n (m-n)z (m_n)3

() - () =%

m-n

(providing n < m-n, i.e.,m > 2n, which we henceforth assume). So

P < 2 (m- )1m-2)...(m-(n-l))(m-n) m-n

n n! m-2n

Assuming m > 3n + 2 and n > 2, which we do henceforth, we take four of the

right-most factors above:

-(n- - - n2
m-(n 'm-2: n)(m-n) _ (m‘(“"»<‘“+m-2n)
1 nZ
< (@m-(n-1)(m + 2
2 2 2
= m& . BRSm-2-n _ n“(n-1)
" n+2 n a2
< mz.
16
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So n

B: < 2 < mn

=3
-

(we use the relatively sloppy bound m" because of its convenience; sharper

results below can be obtained using Zmn/n!). Summarizing:

Theorem: When exactly m points only are considered, at most

n
m 2m n

Bn < ;T- <m

essentially different functions can be realized with a single thresh-
old gate.

Rule-of-thumb: When m > n logzm, single-gate realizability is
improbable.

Justification: The total number of switching functions specified on
exactly m points is 2™. When 2" > mn, we have that all such functions cannot
be single-gate realized. Because of the rather generous approximations made
in deriving the bounds, it seems reasonable to say that by this point, most
functions camnot, in fact, be single-gate realized; hence,the rule-of-thumb.
(Strictly speaking, we can only say that when Zm/mn >a,i.e.,m>n Iogzm
+ log2 a, we have at best a 1/ chance of realizing a random function,
specified on m points. Taking a = 1000, for instance, however, affects the
application very little.)

An example: Suppose we have a Perceptron-Pappa-Pandemonium type
network of threshold gates, i.e.,a large number of randomly chosen threshold
gates (A units) accepting inputs from some "retinal" field, and supplying,
say, n = 100 inputs to an output threshold gate (the R-unit). Although the
first level of gates is fixed, we are free to choose the weights and thres-
hold of the final output gate as we please. What chance, then, have we of
distinguishing between two given different types of pattern on the retinal
field? Applying the rule of thumb, we see the following: If there are
m = 1000 or more (out of the total of 2Ioo ~ 1030) input configurations in
the two patterns, upon which we want the network to discriminate reliably,
we probably will not be able to find any choice of weights and threshold

that will work.
17



A valid objection to this type of argument is the following: The
actual patterns that we want, in fact, to discriminate between, are not
random — they are likely to have natural regularities and redundancies,
which may make them more easily realizable than these enumerational sta-
tistics would indicate. However, in the case of Perceptrons, etc., note
that the first level of randomly connected gates has served to eliminate
such regularities! The Perceptrons, etc.,therefore are at the mercy of
these statistics; tne possibility of true generalization, where surely
m >> 1000 is required, is remote indeed.

Up to this point we have been considering single-gate synthesis.
Suppose we now investigate the capabilities of networks of threshold gates.
Let k be the number of gates in a given network, n and m defined as before,
relative to the overall function produced by the network. Generalizing

and strengthening Cameron's [op cit] arguments, we can prove

Theorem: When exactly m points only are considered, a network
receiving n external inputs, and consisting of k threshold gates,
can realize at most

m[nk + k(k-1)/2]

essentially different functions.

Proof: We assume that there are no feedbacks in the network, so that
there is some order of gates: 18t, 2nd, _ _  yxth —gpp. 188 o cives
just the externally provided n inputs, the 2" receives these plus the out-
put of the 18t, etc., and the kth receives the basic n plus the output of
the k-1 earlier gates, and supplies the network output. On the m specified
input configurations, the 18t gate realizes at most m" threshold functions.
For a given choice of function, the 20d gate is also presented with at most
m specified input configurations, and so can realize at most m(n+') functions.
And so on: The kth gate can realize at most p (PH-1) functions. The total
number of functions calculable by the network (with regard to the originally
chosen m points) is, then, at most

ol . mn+l. s mn+k-l - m[nk + k(k-l)/2].

END OF PROOF.
18
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Rule-of-Thumb: When

m < [nk + k(k-1)/2] logzm,
a network of k gates will not suffice for most functions.
Proof is as for the previous rule-of-thumb.

An example: Consider a character-recognizing system with n = 100, and
suppose m = 8000, i.e., 8000 variations on a given character are to be recog-
nized. By the above, then, one would expect to require k = 6 threshold gates
for realization, at least. Of course, here the well-behavedness of naturally
arising functions can be expected to help; the bound is only a rough approxi-

mation of what might be needed.

Corollary: For completely specified functions (m = 2"), if

k<-t-n+[(-n)24+2
z ) —

then realizability in a network of k gates is improbable.

Proof: Substitute m = 2" in the above rule-of-thumb and solve for k.

The bounds hold from n = 4:

n k n k n k
4 1 10 8 16 77
5 2 1 12 17 109
6 2 12 18 18 154
7 3 13 26 19 218
8 4 14 37 20 305
9 5 15 54
ool
T
and above n = 20, the bound is very close to the dominant term: J% 2 .
(This is a substantial improvement over Cameron's asymptotic bound of 2“’3.)

19



V. NETWORKS OF 3-INPUT MAJORITY GATES

We report here on an introductory exploration of synthesis
methods for networks of 3-input majority gates. The results obtained

were largely negative, so that the discussion will be brief.

A 3-input majority gate (called henceforth a 3-gate) realizes
the switching function

maj (X, y, z) = xy + xz + yz = (xyz)

denoted, in this report, by the parenthetical closure of three arguments
(as on the right). The synthesis problem is: Given an arbitrary switching
function, find a network of 3-gates which realizes it. Minimality criteria
may include the number of gates and the depth of the network (i.e.,the

maximal stage delay).

It was decided to study first functions of only four arguments.
Computer programs (for the RCA 501) were written,debugged, and run to
experiment with various trial synthesis procedures. The first of four
programs written converted the Harvard Computation Laboratories list of
238 four-argument PN sym'letry types into a list of easily manipulatable
truth table representations in the RCA 501. Subsequent programs used this
data, so that a trial procedure could be tried out (in effect) on every
one of the 65,536 four-argument switching functions.

Program number two was written to try out a simple "synthesis-

by-expansion" idea, just to see how it works. The expansion theorem:

Bo= OxB) xRy

was taken from [Cohn-Lindaman]. Its effect is to replace the problem of
synthesizing Px by the problems of synthesizing P;' and Py separately, where
y can be chosen so as to make these problems simpler, — all at the expense
of three 3-gates. Program number two made the following ten substitutions
for x and y:

x,y) = (w,0), (w,x), (w,y), (w,2),

(x,0), (x,y), (x,2), (y,0), (y,2), (2,0).

20
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Thus in each case Py and P? had only three arguments, with known optimal
realizations. The number of gates required for each substitution for each
function type was printed out. Choosirg the best of the ten for each type,
an average of 6.2 3-gates was required; this is surprisingly good, although
far from the optimal networks obtainable. At most four stages are required
by this expansion — all four were usually needed. The experiment showed
that all ten of the basic expansions should be considered — the range from
best to worse over this choice was large (e.g., from 6 to 11 gates were

required, depending on the choice of expansion variable).

Program number three was written and run to find all two-stage
3-gate realizations that exist for 4-argument symmetry types. A modified
form of the method of [Miiller-Winder] was used. Of the 238 symmetry types
52 were found so realizable. These results gave known optimal networks,

then, for a large number of the functions we were studying.

Program number four was our first serious try at a general
synthesis method; it was intended to apply to functions of any number of

arguments. The algorithm is as follows:

(i) Initialize by listing all functions of the given input
variables that can be realized by a single 3-gate. Then go through the
following steps repetitively until a realization is found, or patience is
exhausted,

(ii) Choose the k functions in the list which are most similar
to the given function to be realized (i.e.,which agree for the most input

specifications). [If any agree exactly, exit.]

(iii) Take all possible triples from this set of k, forming the
majority of each triple, and listing the resulting realized functions to

replace the previous list of candidates. Return to step (ii).

The number of gates in the final network (when one is obtained)
is (3m+l-l)/b, where m recursions were required. The results of the appli-
cation of this algorithm to the 238 4-argument symmetry types were
disappointing. Unfortunately, the experimentation ended before the reason
for this was satisfactorily established (bugs in the program? faulty intuition?

too small a k used? — we used k = 10. etc.).
21
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To complement the positive results of program number three (the
2-stage realizations) and to round out the study of four-argument functions,
a long and tedious hand application of modifications of the [Miiller-Winder]
method was made. Instead of treating each of the 238 Harvard PN symmetry
types, we used a new and better classification method of [Goto-Takahasi].

By this method, only 83 types, called SD (for gelf dual), are needed. The
hand calculations involved first a derivation of a set of 83 SD repre-
sentatives (which are listed in the appendix) and then a realization of each,
in an attempt to obtain 3-stage realizations for all 4-argument functions.
(The average number of gates needed was 6.9, 2.8 stages average.) All but
two SD types were 3-stage realizable (the realizations are listed in the
appendix.) The two exceptions were the parity function and the "almost-

parity" function (differing from the parity function at exactly one point).

It was found possible to prove that neither of these functions
are 3-stage realizable, by the following argument: If a function f is
3-stage realizable, then f = maj(g,h,i), where each of g, h, and i are
2-stage realizable. The results of program number three identified the 19
SD types which are 2-stage realizable; these, then were the only candidates
for g, h, and i. The next step in the argument is to note that since £
agrees with the majority of g, h, and i at each of the 2" input points (there
are four arguments, and the representative SD types have five arguments, so
n = 5), the sum of the number of agreeing points between f and g, f and h,
and f and i, respectively, must be at least 2 x 2", By considering the 17
cases, however, it was found that none agreed with the parity function in
more than 20 positions, so the sum could not exceed 3 x 20 < 2 x 25, Thus
the parity function is not 3-stage realizable., Similarly, only two 2-stage
realizable types were found which agreed with the almost-parity function in
more than 20 places; and they agreed in only 22 positions, so both would be
needed to realize it. But by [Miiller-Winder] methods they did not suffice.
Thus neither the parity function nor the almost-parity function can be
3-stage realized by 3-gates. Since we know all functions 2-stage realizable
(by program number three), we have proved that the realizations listed in
the appendix are minimal in number of stages (if not number of gates).

Summarizing (these data were reported in [Winder-5]):
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Minimal Number Number of Number of
of Stages SD types Functions

0 1 10

1 1 80

2 17 10,260

3 62 55,152

4 2 34

83 65,536

General conclusions: The study has only just begun. Expansion
methods deserve more attention. Work on more ambitious general programs
should commence with an analysis of program number four, and further experi-
mentation with it. The realizations obtained by hand should be analyzed.
Comparison with the methods of [Akers-3] should be made. (Akers has run
ten of the 83 types with his program, obtaining two realizations definitely
better than our hand calculations, two realizations definitely worse, two
identical, and four that use fewer gates but more stages. Over these ten,
he averages 4.7 gates, 3.4 stages, as compared with 5.9 gates by the simple
expansion program (number two) and somewhat less than four stages, and

compared with 5.5 gates by hand, and 2.7 stages.)
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VI. TWO METHODS OF THRESHOLD GATE SYNTHESIS
by R. 0. Winder

The optical recognition of characters is a commercially important problem; much of
what is said below is significant in this area. Pattern recognition, a generalization of
character recognition, plays many roles in artificial intelligence. As Minsky* sees it,
for instance, one wants a computer to categorize the various problems presented to it
into patterns, in order to choose suitable methods of solution. To do this, the computer
determines, for each incoming problem, whether or not it satisfies each of a list of
properties. (The analogous procedure is usually followed in optical character recognition.)
If we call this list of properties an input vector, then the final step in the process is:
Given an input vector, to determine into which category the given problem is to be placed;
each category has a set of associated methods to be used in solving the problem. Without
loss of generality, we will restrict ourselves to the question of determining whether or
not the given input vector belongs to a single given pattern.

This reduces the problem to switching theory: To accomplish the last step in pattern
recognition, a certain switching function of the input vector must be computed. (If the
input vector belongs to the pattern, the value of the function for that vector is 1, other~
wise 0.) Theoretically, switching theory could be used to realize such a function, How-
ever, because the number of inputs is often far too large to be handled by conventional
switching theory, and because the function cannot be completely specified in practice, the
following procedure is often followed to design a decision network. (We follow Minsky's
excellent discussion of the matter. *)

A. BAYES NETS

We make several assumptions. First, we "assume that the situation is basically
probabilistic'" (Minsky). Next, we assume that we know, or can estimate, certain
conditional probabilities: the probability of the ith property holding, given that the input
vector belongs to the pattern. Finally, we assume that these probabilities are, in a
sense described below, independent. Now we can design a system which is able to
compute the probability that a given input vector should be assigned functional value 1 or
0 (in or out of the pattern). When several possible patterns are being considered, the
system might classify by choosing the pattern with the highest probability. More
generally, we specify levels of confidence, so that the machine may fail to classify
certain unusual problems; in our case of a single pattern, a confidence level A > 1/2
would be used.

* M. Minsky, "Steps Towards Artificial Intelligence'", Proc. Inst. Radio Engrs.
Vol, 49, pp. 8-30, January 1961,
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More explicitly, suppose the inputs are associated with variables
X = (xl' xzv‘O"Os xn)
and a particular state of the inputs is represented by
—g = (gll Ezgooooo, En).

We are assuming that we know the probabilities

pp = Prix, = 11 f® =1
r, = Pr(l\:i = 11| fx) = 0

P, Prif(x) = 1).

From these we obtain the related probabilities

and simflarly with f(x) = 0.
Now we use the Bayes law, writing

—

Prif(x) = 1and x = £) = Pr(f(x) =1 | X = §) » Pr(x = )

=Pr(x =¢{ | fx=1) « Prif(x) = 1).

Prfx) =1 | x = £)
Prix =% | fm) 1) - XE® =1

Prf(E) = 1)

25



Three alternatives are available: 1) We can write Pr(x =T ) in terms of the probabilities
given us*, yielding somewhat more complicated rules than we obtain below, 2) We can
follow Minsky's discussion, taking at this point a maximum over the quantities

Prix = £ | f(x) = 1) - 0 Prix = g | fx) = 1)

for the various patterns (f's), or 3) We can assume at this point that the t are equiprobable,
so that Pr(x = ¢) is independent of ¢. To simplify the illustration and future
computations we chose the last alternative.

If Pr(f(§) = 1) is calculated to be greater than some confidence level, then, we
will ask the machine to guess that f(£{) = 1_(i.e., to classify an incoming problem into
the corresponding category). Otherwise, f({) = 0. We convert this calculation into
the characteristic threshold function form as follows:

Pr(f(¢) =1) = A if and only if
. R Pr(x = §)
Prix = ¢ | f(x) = 1) = A Pr(f(;) - 1) if and only if
. Pr(x = ¢) . .
- sy = A o XX =E) if and only if
111 Prix, = ¢, | f =1 =z A Py and only
Priy = & | f(x) = 1) = 9 (for appropriate 6)
i Pl'(xi =0 | fix) = 1) if and only if
Prxj = &; | £(x) = 1)
Z log Pr(xi - o0 | f(—;) B = log 6 if and only if
i
Z ai gi =T,
i
where Prix, = 1 | fx) = 1)
a, = log —
Pr(xi =0 | f(x) =1

and T = log 6. T canbe calculated from the various probabilities that we know, as
are the aj, but the general philosophy here is to generate the aj as specified, and to
pick the T so as to optimize performance.

* M. E. Maron, 'Design Principles for an Intelligent Machine'", IRE Trans. Inf, Theory,
Vol. IT-8, pp. 179-185, September 1962,
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We will now discuss - .ollowing question: If we intend to use a threshold func-
tion for the recognitior. p.22¢.dure, does the above~stated point of view provide the best,
or even good, sets of weights a ; 2

Saul Amarel (RCA Luborstories) has suggested that the independence assumption is a
very severe one, and that only a small proportion of threshold functions might actually be
realized by the above procedure. This observation has motivated the investigations re-
ported below — indeed, using the same data, a simpler rule will be shown to work better,
and allow a startling improvement; a nonprobabilistic switching theory viewpoint is applied
to obtain these results.

We facilitate a comparison by considering the following situation: All 2" of the _E
are given equal probability of occurring, and each f (¢) is specified. We assume that f
is a threshold function. Probabilities are obtained simply by counting frequencies:
Let £ Xq be the restriction of f obtained by setting x; = 1, fxj obtained by setting x

= 0, and let m(f) be the number of different ¢ such that f( ¢) = 1. Schematically,
suppose the 2® possible ¢ are mapped as in the diagram (f(£{) = 1 in the shaded

Y/, ¢
D

v’,//
Q2

If A, B, C, and D are the number of input vectors ¢ in the four regions, respectively,
then A =m(fy), B = m(fy), C = m(fy), and D = m(f3). Notethat m(f) = B +
D =m(fy) + m(fyp, mEx) + m(fy) = 20-1, etc. Since the ¢ are
equiprobable, we have

»
1]
-

»
n
(=3

m(fxi)
Py 7 m (f)
m (fx )

T T Tmm

m(f)
o
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Theorem: The independence assumptions hold only for constant functions and func-

tions which are the identity (or complement) in some argument.

Proof: If f is constant (0 or 1), the independence is trivial; so suppose f is not a
constant function, By simple properties of threshold functions, we now know that we
can, without loss of generality, assume that f(0) =0 and f(1) =1, where

(0, 0, «cc,y 0)
a,1, ..., 1).

=il
o

Prix=1 [f(x) =0) = O,

so that if the independence assumptions hold,

0 =Ny =01 —w———,
i i

i

But one of the factors must be zero, so for that i,

m@) = 2"-m® = 2" - [md )+ m(E) ]

i i )

-md) =2" P L S

i
On the other hand
Prix = 0 | f(X) = 1) = 0.

8o, by the independence assumption

m(fx)
i
0= 1I(1 - =01 » ———) .
i( Pi) i(1 m )
Again some factor, say the jth, must be zero:
m (f) =m(fx ). (2
J
28

— 4

-4

——

- S e e



But now, from Eqs. (1) and (2),
2 smp =m ) = 27,
%

so that all the terms are equal. Thus for some j, f Xj must be the constant 1. Also,
since m(f’-‘- )y = m(f) -m(fx y=0, f; must be the constant 0, Thus f(x) = x, .

j j j }
(END OF PROOF.)

Thus we have shown that for any interesting threshold function, with equiprobable
input combinations, the independence assumptions in fact do not hold. The theorem can
probably be extended to more general input distributions, ~ possibly to arbitrary distri-
butions. This substantiates S. Amarel's conjecture, and suggests that the Bayesian
approach can be improved. In the next section we consider a different viewpoint.

B. GEOMETRIC SYNTHESIS

A standard switching-theoretic geometric interpretation of threshold functions is
as follows: The inputs take on values +1, the input n~tuples ¢ are mapped correspond-
ingly onto the 2@ corners of a 2 x 2 x ... X 2 cube centered on the origin of a Euclidean
n-space. For a given f, those corners (or vertices) for which f (£) = 1, are called 1-
vertices; if £ (¢) = 0, the vertex is a 0-vertex. An (n + 1)~tuple ao, al, eony an of real
numbers is a realization of f when the hyperplane

ao+ a1 x1+ .oe +anxn=0
separates the cube so that O-vertices lie on one side, 1-vertices on the other; when such
a hyperplane exists, f is a threshold function. (Note: We still use 0 and 1 for outputs.)

In order that we can treat the threshold in the same manner as other weights, and
so that the hyperplane will pass symmetrically through the origin, we add a new dimen-
sion and variable x,; when xg = + 1 we define the new function to agree with our original
function; when xy = -1, we define the new function to agree with the dual of the original.
(This is the self-dualization idea of [ Goto-Takahasi).)

Now: An appropriate normal form for the equation of such a hyperplane is

X cosa +Xx cosa. +x_ cosa_+t,.,..+tX cosa = 0
o ) 1 1 2 2 n n '

where the oj are direction angles between a normal to the plane and the corresponding
coordinate axes. We will relate direction angles to area on an n-sphere, and then area
on the n-sphere to the m (fxi ), by straightforward geometric arguments, described and
sketched in Fig. 1.
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. separating
hyperplane

Fig. 1 Sketch of n-sphere

Suppose we pass an origin-centered (n+1)-sphere of radius }/(n+1) through the
20*1 yertices of the "cube' which we have defined inE®*1 | For concreteness, let
us consider now a particular coordinate (say x) which we consider '"up''. (We should
speak of an xj ; "i" is dropped for convenience. We want to find a = cos « for this
x.) All the other axes define a hyperplane, which we call ""horizontal". If we pass
hyperplanes parallel to this one, at a distance 1 "above'" and 1 "below", we have isolated
the regions where x = +1 and x = -1, respectively; this is where fyx and f x are
represented. We will consider only fx below; by our construction, fx is just its dual.
Within the n-dimensional region containing fx , the original (n+1)-sphere defines an
n-sphere by intersection. Furthermore, let us imagine our separating hyperplane passed
through the figure; it will divide the n-sphere into two parts (corresponding to 0-vertices
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and 1-vertices). Now. since the 2N vertices are spread evenly over the surface of the
n-sphere, the ratio m(fx)/m(fx) is an estimate of the ratio of areas cutoff by the sepa-
rating hyperplane, For greater convenience. we define the ratio

_ ( Area on 1-vertex side in upper n-sphere) -1/2 (Area of n-sphere)
r =
1/2 (Area of n-sphere)

n-1
m(fx) -2

Q

zn-l

(r will have the same sign as the final weight; r = 0 when f is insensitive to x.)
We assume that r is known by counting (or sampling) vertices; we see next that this

ratio determines the distance, D, which separates the separating hyperplane (as induced
in the upper n-sphere) from the origin (of the upper n-sphere). With a bit of trigonometry,

it can be seen that
‘, 2 n-2
w -
2 n-1 (¥n-D7) V;dD

o (yB*?  Va-p?

dr =

(where w is the area of the unit n-sphere), so that

3-n
ap_ Vi% o 0% %
r 2wn_1 n
Set
Vi
K= e—
an_l

Initial conditions are that r = 0 when D= 0 (and r = 1 when D =\fr-1).

But if we know D (in terms of r), then we can determine the angle 8 between the
separating hyperplane in (n+1)-space and the x-axis — we have a right triangle with
adjacent side 1, opposite side D. The direction angle o is the complement of 8 |,
so that

D B sign (D)

a =cosa = 8ing = o R AT
Vi+p? (—-—12+1)1/2
D
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(We drop the "sign (D)". but in practice it is used. of course. to determine the sign')
Solving for D:

2
DZ a 5
l1-a
Now we can calculate
3-n
da_d@dp 2 M 0%
dr dD dr n
3-n
n/2 2
= k(l-a} - 5{‘—1 a?)

(after substituting and rearranging). Noting thata =r = 0 at D= 0, we calculate an
expansion for a around r = 0;

5
i} 3,43, £, 5 54, 45 r°
The constant
n 21rn/2
- Vi At (act
n wy r (E) nrl " 2
k = ——o = = R
2 “no1 n-1 2T (3)
2
9 - 27
n-~1
r (5>

k - ‘/—72'- as n - « (Wallis' Theorem),

If we take out the dummy X, and divide all weights by k - 2 ™ and set k2 (2+3/n)/6 - ).
we obtain

®
1

; [m(fxi) -m(f;i)] -x[m(fxi) -m(f;i)]3 +...

and threshold

T = [zn-l n-1

-m@®) -x [2 -m]3 ...

This threshold is for a +1 system; using a standard rule, the threshold for a 0, 1)
system (as defined in the introduction) is then

- ' o N
T 1/2(T ta ¢+ B, + .. 4 an).
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Experience in the application of these rules has been very good: Often the first approxi-
mation, ai = m(fx; )-m(fx;)andT' = 2°8-1-m(f). realizes given threshold func-
tions. For all functiors tried (including a complicated ten-argument example), it was
easy to find a \ so that the second approximations worked; the values were very close to
the predicted \'s. Randomized experiments on a computer are planned to check the
general worth of the second approximation, to determine the variation of A from function
to function for a given n, and to determine a good value of \ as a function of n. (\= 0. 0008
was a good value forn= 7, \ = 0.00001 for n= 10.)

An important note: Chow [ Chow-2] has shown, along with other theoretically very
interesting results, that the signs and relative magnitudes of the a, assigned by the [irst
approximation a = m(f x{) - m(fx; ) are always correct.

C. COMPARISON AND COMMENTS

Theorem: The Bayes approach produces a set of weights worse than does the first
geometric approximation, described above.

Proof: Assume that the weights should all be positive; if they are not, suitable com-
plementations make them so. It is clear from experience with the first approximation,
and follows from the fact that a better approximation subtracts a cubic term from the
first, that the first approximation gives exaggeratedly high first estimates to the larger
ai;motherwords, fora, >aj, the ratio -

m(fxi) - m(f;i)
m(fx ) - m(f; )

J i

is too high (for the best chance of realization). Let us abbreviate, putting m, = m (f x )

and m = m(f). Now we will show that the Bayesian weights i
m m
i/m i
a = log ——— = log
i 1 mi/m m ml
are worse yet. because for m; > mj,
log "
m-m, N m, -(m-mi) i m, -m/2
m m, -(m-m m, -m/2
tog J jomomy o omyom/
m-m
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which is already too large. We know that 0 < mj< mj=< m, and we drop the equality

possibilities, where the Bayes weights blow up. Furthermore, because of the positivity
assumption (and [Chow-2 ] , for example), m(fxj) > m(fgy), i.e. mj >m-mj, 80
mj > m/2. Puttingy=% and x = _"l_‘ﬁ.l, we wantthen toprove: For 1/2 < x <y <1,

J__
log l1-y s ¥y-1/2
) X x-1/2 °
Ogl-x

Since logll_-; >0and x - 1/2 > 0, we need only show that the function

= (xo Y e X

g(x,y) = (x-1/2) log iy v-1/2) log T
is positive in the range R: 1/2 <x <y <1. But

% _ (x-1/2y. 1Y 1 ¥y

W (x 1/2) [l-y (1-}')2] log 1-x

- (x-1/2) - log X
y@-y) 1-x

and

3 o _ _1 1 _ y-x) y+x-1)

x ¥y yd-y  x(@-x) y(aA-y)x@-x

which is positive in R, Furthermore

a_g] = o,
% | x=1/2

(the left boundary of R), so that -gys- is positive in R. (There are no discontimuities. )
But

gix,x) - 0

(the lower boundary of R), so that g is positive in R (again no discontinuities), as we
wanted to show. Thus the ratio of larger weights to smaller weights is greater in the

Bayesian approach than in the first geometric approximation, where it is already too
high. (END OF PROOF.)
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We have shown that the Bayesian approach is poor for the synthesis of threshold
functions, assuming equiprobable inputs and complete specification. It should be clear
that neither of these are important in geometric synthesis, however: Probabilities of
inputs play no role, and the areas can be estimated from samples, when the function is
incompletely specified. (Use a weighting density function so that closely packed sample
points have their proper effect relative to sparsely packed ones.) Whether the Bayesian
approach is inferior to the geometric in the case of nonthreshold functions, has not
been investigated. (Here probabilities mean something — the problem is to minimize the
probability of error, say, when a threshold function is used as an approximation, )

As an example of these ideas, consider the function expressed by
A [B(C+D+E)+CD(E+F)+(C+D) EF] +BCD(E +F),
which has (minimum integral) realization
7, 6, 4, 4, 3, 2, threshold 16.
The weights generated by the Bayesian approach are

7
log%,logl—s,log-l—,?.logl—s,log%,logl%

or (dividing through by . 08)
10.04, 6.66, 4.15, 4.15, 3.04, 2.00.
With these weights, at best 62 out of the 64 vertices can be separated properly (thresh~
old 19.2). Note the characteristic manner in which higher weights are exaggerated, as
compared with the minimal realization.
The first geometric approximation is
19-3, 17-5, 15-7, 15-7, 14-8, 13-9, threshold 32
or (dividing by 2)
8, 6, 4, 4, 3, 2, threshold 16.
This realization also fails on two vertices; if optimization by varying the threshold is
allowed, the same weights, with threshold 17, fails only on one vertex. Any (positive)

A up to 0. 004 will, in the second geometric approximation, give a realization of the
original function; the theoretically calculated value of 0. 0034 works fine.

35



A final comment: The iterative synthesis of Mattson* apparently begins with our
first geometric approximation as initial trial (although no rigorous basis is suggested).
Mattson's idea is to optimize on one weight (or the threshold) at a time. As with the
Bayesian approach, however, threshold functions will usually not be realized. J.
Sklansky of RCA Laboratories raised this issue by constructing a "pathological' plane
which almost realizes A (B +C), but which cannot be transformed to realization by
changing any one coefficient. The example discussed above was subsequently chosen
to illustrate that even with a very good initial try (in fact, the try which I believe Matt-
son intended), namely

8, 6, 4, 4, 3, 2, threshold 6
(in the +1 system), which misses only the 1-vertex
ABCDEF: -8+6+4+4-3+2 = 5 < 6,

Mattson's iteration won't converge: If a change in some weight is to improve the reali-
zation, it will clearly have to be a decrease in the weight a of A, an increase inb or c
or d, a decrease in e, an increase in f, or a decrease in T. But a decrease in a loses
the 1-vertices ABCDEF, ABCDEF, and ABCDEF at the same time it gains ABCDEF —
this is no progress, Similarly increasing b loses 1-vertex ABCDEF and ABCDEF and
""gains" 0-vertex ABCDEF; increasing c loses ABCDEF and "gains" ABCDEF; d sym-
metrically; decreasing e loses ABCDEF, ABCDEF, and ABCDEF; increasing f loses
ABCDEF and '"gains'' ABCDEF; decreasing T '"gains'" ABCDEF and ABCDEF. Thus a
combination of changes will be needed to effect a realization by iteration; the 'hill"
being climbed requires a more subtle approach. This is strong reason for considering
more direct methods, as is outlined above.

The main conclusion of this section is: If we decide in a recognition problem to
try to use a threshoild decision function, then switching theoretic methods for synthesiz-
ing the function are preferable to the conventional Bayesian approach.

* R. L. Mattson, " A Self-Organizing Binary System, " PROC EJCC, pp. 212-217,
December 1959. -

36

B T W e e e e



D. CALCULATION OF MEASURES

The calculation of the quantities m (f), m(fx ;) from an algebraic representation of

f can be made very easily, providing f is 2-monotonic, as follows:

1. Put the representation into canonical form (page 67 of thesis [ W-4] ); call

this form P. (We will assume P is positive, but nearly the same procedures

apply in the general case.)

2. Write the numbers 2" ' (decimal form) under the variables x; , in each
appearance as the last factor of a term of P. Then m(f) is simply the sum
of these numbers.

Example: (x1 is A, etc.)
A[B(C+D+EF) + C(D(E +F) +EF)] +BCDE
8§ 4 1 2 1 1 2
mf) = 8+4+1+2+1+1+2=19,
Proof: In general,

m(f) = m(fx) + m(f,-()

for any argument x. But f is 2-monotonic by assumption, and P, being in canonical
form, is

P = xl Q+R
where Q and R don't involve x 1 Thus

m(f) = m(g + h) + m()

where g is represented by Q, h by R. But by theorem 18 (page 67) of thesis [w-4],
R - Q, sothath—+g;i.e., g+h=g. Then

m(f) = m(g) + m).

This simple rule of decomposition, applied recursively, gives the rule stated above.
(END OF PROOF)
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To computc the m (fx;). below each nuinerical entry of the previous step,
except the 1's, write ore half of that entrv.

Compute m(fg;) as follows: Moving from the left and starting on the bottom
row, add up entries until an x{ is encountered- then skip over whatever the

xi might multiply into. and move up to the upper row, adding entries until
an xj with j =i is encountered. Then move back down again, and continue
as before. The sum willbe m(fg; ): thenm(fx ; )= m (f) - m(fg;). (It's
easy to generate a slightly more complicated rule to calculate m (f xi)
directly; this can he used as a check.)

Example:

A[B(C+D+EF) + C(D(E +F) +EF)] +BCDE

A: —\,f\fVV\/\N\/WNW\@ 2. 19 -2=117.
B: I’W\M\M’\%—@\,\,‘Aﬁ./\a 4. 19 _ 4 = 15.

C: 5. 19 - 5= 14.

0 o 6. 19 -6=13.

E: 7. 19 -7=12.

F: —(4)2) (1) (1 8 19-8=11.
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VIII. APPENDIX
by R. 0. Winder

The 83 SD symmetry types for four arguments, with Chow parameters
and realizations by 3-input majority gates (optimal number of levels)

(1) 80000

(2
A(ABC) (ADE)

(3) 62220
AB(ACD)

(4) 62200
A (BDE) (CDE)

(5) 62000

(ACD) (ACE)
(BDE)

(6) 6000¢C

(ACD) (ABE)
[(ABD)C(ABD) ]

(7) 53311
A(ABC) (ADE)

(8) 53111

(ACD) (ACE)
(ach)
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(9) 53111

A(CDE)
[ BE(BDE) ]

(10) S

(ACD) (ABC)
[BE(ABD) )

(1) s

(ADE)(ABE)
[ (CBE) (ABC) (ABC) |

(12) s1n

(ABC)(CDE)
[ (ABE) (ABD)B]

(13) 44400
ABC

(14) 44222
AB(CDE)

(15) 44220
A(BDE) (BCE)

(16) 44200

(ABC)(ACD)
( (ABD) (BCE) (BCE) ]



(17) 44000
A(ACD) (BCD)

(18) 44000

(ABD) (ABD)
[ (¢BE) (CDE)E]

19) 42222
(ABC) (ABC) (BDE)

(20) 42222

(cnzxnéz;g
[ (ACE) (ABD) (ABD) ]

(21) 42220
(ABC)(BCD) _ _
[ (ABE) (BCD) (ABE) ]

(22) 42220

(ACE) (BCE
{ (ACD) (BDE) B}

(23) 42200
Enc) (CpE) _ .

(ACE) (BDE) (ABE) ]
(26) 62200

(AcD) (Bch) _ _
((AlD) (éﬁ%) (ABE) )

44

(25) 42200

(AcD) (ABD)

7 [ (CDE) (ADE) (ACE) ]

(26) 42200

| [ACACE)(ABD) ] _

[ (ABC) (ABD) (ABE) ]

(ACD)

(27) 42000

(ACD) (ACD)

[ (ABE) (ABC) (BDE) ]

(28) 42000

(ABE) (CDE)

{ (CDE) (ABC) (ABD) ]

(29) 4000Q

(ACD) (ABC) (ABD)

(30) 40000

(ABC) (ABC)

V4 [A(ADE) (ADE) )

(31) 40000

(ABC) (BDF.) (CDE)

(32) 33333
(ADE) (BCE)

{ (BCD) (ABD)E ]
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(33) 33331
B(ABE) (CDE)

(36) 33311
(ABC) (BDE
{ (Al%) (llé)cl

(35) 33
(ACD)(ABD)  __

[ (CDE) (ABE) (ARE) ]
(36) 333N

(ABD) (ACE) (ADE)

@3N 33
(CDE) (ABE) _
[ (aBD) (ABC)C]

(38) 33111
(ABC)(ACE) __.
[(Bn%)(cni)(ABD)]

(39) 331
(ABC) (ACD) _
{ (ACE)(CDE)E]
(40) 33111

(ACD) (BDE) _
{ (»cD) (2CD)B)

45

1) 331
(an%; ..
[ (ABC) (CDE) (ABE) ]

(42) 33111

[ B(BDE) (ABC) ]
[A(ACD) (ABE) ]
{ (coE) (EDE)E ]

43) 3311

(ABC) (BEE) _
[ (ADE) (ABD)A]

(G6) 31
(ADE)E ___ .

(45) 3

(ABC) (ACE)
[ (ABD) (ABE)C]

46) 31111

(CDE)(ADE)
[ (BED) (BEE) (BCD) ]

7)) M

‘_‘Y’ l [ (BCE) (ABC)D
[ (Bc) (ABD) (ABE) )
(ACD)

(48) 31111
[A(ACD) (ABE) }
[ (BDE) (BCD)B]
(ABE)




%9) 31111

[ (ABE) (ACE)D])
[ (ABC) (ABD)E }
(ACD)

(50) 31111

[ (ADE) (ABC) (ABc) )
{ (ABC) (ABC) (CDE) )
( (CDE) (ABE)A ]

(51) 3

A[ (CDE) i BC) (ABD) )
[ (KeB) (ACE) (AlE) )

(52) 22222

[ (CDE) (ABE) (BDE) ]
[A(ADE) (ASC) )
(c(XsE)(ABD) }

(53) 22222

[ (BCD)(CDE)A]
{ (ABE) (BDE) (AC) ]
[ (BCE)AE)

(54) 22222

(ABC)
{ (CDE) (m) iABB) )
[ (BCR) (BC

(55) 22220
(ABC) (ABC)
(A%p)

(56) 22220
(ABE)

(A(BCD) (CDE) ]
[ (XnC)2D)
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(57) 22220

[ (ABD) (CDE) (ABD) ]
[ (ADE)A(ABC) ]
(ABC)

(58) 22220

[ (ABC) (BCD) (ABE) ]
[ (ABC) (ABD)E ]
(ACD)

(59) 22200

[ (ABC) (BDE) (Akc) ]
[ (ABC)E(ABC) ]
(CDE)

(60) 22200

[A(ADE) (ABC) ]
[ (ABC) (ABE) (ABD) ]
(ABE)

(61) 22200

(A (ACE) (ABD) ) _

[ (ABE) (BDE) (AKC) ]
[ (ABE) (BCD) (ABE) ]
(62) 22200

[ (ABD) (ACE)A]
[ (ACD) (ACE) (ABE) ]
(ACE)

(63) 22200
(ABC) (BDE) (BDE)

(64) 22200
[ (ACD) (ABC)E]

—————




(65) 22000

[ (ABC) (ABD) (ADE) ]
[ (82B) (ABC)C]
(BE(ABD))

(66) 22000

[ (ABC) (CDE) (ALD) ]
[ (CDE) (ABE) (ABC) ]
(ADE)

(67) 22000

[ (ABC) (ADE) (ABD) ]
[ (ABT) (BCE)D]
(BDE)

(68) 22000

[ (ACD) (ABC) (ABE) ]
k(ACﬂ) (ABT) (ARE) ]

(69) 22000
[ACACE) (ACD) ]

(B(ABC) (BDE) ] _
[ (CDE) (ﬁﬁ) (coE) ]
(70) 20000

[ (ABD) (ABC) (ACE) )
%(hﬂ) (aZD) (Aee) )

(71) 20000

[A(ABC) (ACD) ]
[ ibﬁz)(m)bl
[Ac(AnE) ]

(72) 20000

[ (ACE)(ABE)D] _

(e
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(73) 11N

(ABC)B -
7 [ (ABC) (BCD) (ABE) ]

(76) 11111
[ (ABC) (ABD) (ABE) ]

[ (ABC) (ABD) (ABE) ]
[B(BCD)E]

(75) 1111
[ (ACE) (BDE) (ABE) ]
[ (CDE) (ABE) (ABC) ]

(CDE)

(76) 11111
[ (ABD) (BDE) (AEC) ]

[ (ABD) (ATD) (ABE) ]
[ (ABD) (8CD)E ]

an

[A(ABC) (ADE) ]

[A(ACE) (ABD) ]
(A(ADE) (ABC) ]
(78) nin

[ (ABC) (BCE)D]
[ (ABT) (Bcb) (CDE) ]
(ABD)

(79) Mmn

(AB[ (CDE)(ADE) (CDE)} )

(AB{ (CDE) (CBE)E])
A

(80) 00000
(ABC) (ABC) €



(81) 00000

[ (ABC) (ABE)D)
[(hat) (Ant)b)]

(82) 00000

[ (ACE) (ABD) (ARC) ]
[ (AbE) (A#D) (ARC) ]
E

(83) 00000
(DEX) (bEX)E

where -
X= (AlC)(lDC)C
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Coordinates:

(Only A = 0 is shown in list,
obtain A = 1 by duality.)
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I. INTRODUCTION

This part of Special Scientific Report No. 2 also consists of a
series of sections; Section II constitutes a survey of the application
of redundancy techniques in switching systems for the improvement of
reliability, Section III discusses several extensions of earlier work
on a specific scheme (reported in Special Scientific Report No. 1) --
the recursive triangles, and Section IV introduces a new line of explo-

ration: reliability in systems with memory and feedback.

Section II is an outgrowth of the Symposium on Redundancy Tech-
niques for Computing Systems which took place in Washington last year.
It is intended to survey the field with the dual purpose of seeing
what is being done outside of our work at RCA Laboratories to apply
redundancy to increase reliability and evaluating our recursive
triangle scheme in the light of what we have observed. We discuss
those methods which are most relevant to the problems that we ourselves
are considering. (In particular, we discuss the papers presented

at the Symposium).

Although many techniques have been suggested for introducing
redundancy into computing systems, only those which require very small
additional quantities of equipment have gotten beyond the paper design
stage. Increased computational capability is a very easy concept to
grasp, but the concept of increased reliability is not well understood.
In fact,the former is regarded as a goal of the system while the latter
is often thought of as an obstacle to be overcome, Consequently,the
two have been separated and people have found it easy to justify large
additional expense for the former and far more difficult to justify it
for the latter. The two are not at all independent but until many more
people appreciate the relation between them, the systems proposed to
achieve reliability through redundancy will be slow to be adopted. A
purpose of Section II is to describe various techniques for redundancy

as well as to illustrate where each technique is most applicable.
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Section III collects and presents the results of a set of brief
explorations of the properties of recursive triangular networks. It
is divided into three distinctly disjoint subsections. The first
establishes that in the case of the three-input rectifier "and" gate
(which we studied in detail in Special Scientific Report No. 1)
triangular recursion can be used to improve the reliability of the
gate no matter how unreliable the rectifiers are. The second sub-
section deals with attempts to make use of the recursive triangle to
improve the reliability of a nonsymmetric Boolean function (ABvCD) .
Both rectifier and threshold realizations are investigated. This
investigation indicates that the most promising level at which to
apply recursive triangulation is the basic "and" gate, ''or' gate level;
where improvements of reliability can be obtained as discussed in
Special Scientific Report No. 1. Finally, subsection three deals with
attempts to utilize the technique to improve the reliability of the
"nor'" function. Improvements in reliability were obtained, similar to
those reported in Special Scientific Report No. 1. Maximum improvements
are obtained with three 'nor' gates feeding an "and'" gate. However,
when the probability of complete failure of the ''nor" gate becomes large,

a majority gate or ''or" gate will give better improvements.

In Section IV, the feasibility of introducing self-repairing
capability to a logical net is discussed. In zomplex logical systems
having millions of component units, as also in Satellite systems, it will
be very desirable to have a logical organization capable of 'self-repair'.
Also, one would like to have a net take preventive measures to avoid any

failure that may be anticipated.

A logical scheme for organizing logical nets having the above
capabilities has been briefly studied. In this scheme a logical net will
be provided with the facility to repeat a calculation with an alternate
net (subnet) whenever an error is detected. Substitution of a net (sub-
net) may also take place at the anticipation of an error occurrence. In
such a scheme, greater reliability of operation of a net would be achieved

at the cost of increased computational delay. As recalculation will occur
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only at the incidence of an error, the net will be making optimum use of
the computational time. Also, as the network deteriorates due to, say,
aging, its ‘'reliability' will not decrease, — instead it will take more
time to do a computation.

If it is required that each computation done by the net should take
only the shortest necessary delay, then one finds that this substitution
scheme offers the only possible way of introducing self-repairing capabi-
lity to the logical nets. In the context of this scheme the problems that
arise in the organization of such nets are pointed out. Also, some examples

of such nets are discussed to illustrate the techniques of analysis.
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II. REDUNDANCY TECHNIQUES FOR SWITCHING NETWORKS
by S. Y. Levy

This report is an outgrowth of the Symposium on Redundancy Techniques
for Computing Systems which took place in Washington last year. It is
intended to sux:vey the field with the dual purpose of seeing what is being
done outside of our work at RCA Laboratories to apply redundancy to increase
reliability and evaluating our recursive triangle scheme in the light of
what we have observed. We discuss those methods which are most relevant to
the problems that we ourselves are considering. (In particular, we discuss
the papers presented at the Symposium).

In the case of devices built of few components or at least easily
accessible components, it has almost always been the policy of manufacturers
to increase reliability by either derating components or using more reliable
ones. By and large, improvements in reliability have come about through
improvement in the reliability of the compoments used, as shown by most
people's experience with their home radios, for example. But increased
reliability of components has led to attempts to build still larger more
complex systems which need the increased component reliability merely to
maintain the old levels of system reliability (you might recognize this as
a sort of "Parkinson's law'" of technology which says that advances in techmo-
logy result in an expansion of applications which require the new technology).
In addition, many applications of electronics are such that the cost of error
(or failure) is high enough to warrant large additional expenditure to prevent
it. Applications have arisen for equipment in hostile environment (e.g.,
radiation belts, war, etc.) where it is desirable to maintain operation in
spite of the certainty that parts of the device will fail — or the device
will be expected to operate in an enviromment where repair or replacement of
parts is impossible (e.g., an unmanned satellite). At the other extreme
there is the new batch-fabricated technology where large quantities of rela-
tively inexpensive devices are made simultaneously and interconnected in a
functioning array but with component yields far less than that acceptable
from individually produced devices. Can redundancy be applied to this techno-
logy to make use of these less-than-perfect arrays of components? At any
rate, it is abundantly clear that there is need for suitable techniques for
the efficient application of redundancy.
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The Reliability of Coherent Systems by Esary and Proschan (Boeing

Aircraft)lis a general discussion of the analysis of the behavior of contact
type networks (e.g., relay networks, unipolar transistor networks). An n-con-
tact network is described by an n-component vector -- each component being an
indicator of the state of the corresponding network component (xi = | indicates

th

the i~ component is operating properly, x, = 0 indicates the component is not

i
operating properly). An overall structure function $ (X) is defined (where
= X x2""’ xn) such that Q(i) = ] if the overall network is functioning
properly, Q(i) = 0 if the network has failed. The property coherence is

defined by three conditions

1) 8(1) =1 where 1 =1, 1, ..., 1
2) §(@) =Owhere 0=0, 0, ..., 0
3) For all i(xi > yi) -—I(?() > 6]

The paper deals only with coherent nets and their behavior under a form of
iteration which involves replacing each contact by a replica of the entire
network. To investigate the behavior under this type of recursion they define
h(p) as the probability of the network operating properly as a function of p, the
reliability of an individual component. h(p) is a so-called "'S-shaped" curve,

——hip):P

nip)
—TYPICAL hi(p) S-SHAPED

o]

o* |
——e -
P

If each component is associated with a p such that h(p) > p, then the
iteration results in a staircase effect leading to arbitrarily high
reliability (for example,in the diagram h(p*) > p*; h(h(p*)) > h(p*) etc.)
If h(p) < p the staircase leads to O reliability in much the same way. How-
ever, the authors fail to give a reasonable characterization of coherence in

terms of what sort of restriction it represents; in fact,they do not give a
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single example of a noncoherent network. Winder has pointed out a simple
example of a noncoherent structure which we include here.

1 2
X y
+ c/;— >0 f(x,y)
X y
3 4

f£(x,y) = xy

Suppose relay 4 is not functioning properly and is stuck closed
while relays 1, 2, 3, are operating correctly,

Then

f(x,y) =xy vx=x ,

so
$(1,1,1,0) = 0
Suppose relay 4 is stuck closed and relay 3 is stuck open, while relays

1 and 2 are operating correctly.

Then
f(x,y) = xy ,
80

§(1,1,0,0) = 1
$(,1,0,0) >8$(1,1,1,0) and the network is not coherent.

-
Note that the structure function §(X) is a function from binary inputs to a
binary output and so may be regarded as a switching function. We can suggest
the following characterization of a coherent network.

Theorem: A network is coherent if and only if the switching function

Q(i‘) (not to be confused with f(?) the function computed by the network)
is positive in all xy and not identically 0 or 1.

Proof: 1) Assume the network is coherent. Then consider any -)? for

-
which §(X) = 1. Changing any x; from 0 to | can never decrease § (i‘)
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because the network is coherent. Therefore 6? —-Qx * and the
function §(§) is positive in all X, . t t
2) Assume Q(i) is positive, and not identically O or 1.
Then for all x, §.. -3 _, this means increasing x, can never decrease
- TRy Tx - i -
F(X). Since for at least one value of X, § (')E) = ],then3 (1) = 1; and
since for at least one value of -i, 3 (i) = 0, 1(6) = 0, the network is

coherent.

Corollary: Irredundant circuits are coherent. The structure
function, ¥, of an irredundant circuit is the "and"

function!(i) = X, °X

1 Tt X

2

If one considers the mode of failure as failure to operate (to remain
stuck in rest position) then all frontal circuits (where relays are normally
open) are coherent circuits because a failure can only open a path and make

it less likely that the network functions properly.

Though the authors' interest in reliability leads them to attempt an
iterative procedure where each element of the network is replaced by a replica
of the entire network, the type of circuit which they are studying yields to
an entirely different analysis than does the recursive triangle. In the
Hmore-Shannon2 paper on redundant contact networks (which incidently devotes
a great deal of time to the study of these S-shaped curves) there is an
interesting contrast of the two technologies, the mechanical (relay or
contact type) and the electronic (rectifier or transistor type). In comparing

3 redundancy scheme to their ov:m,Moore-Slmnnon2 note that where

the Von Neumann
in an electronic system the logical combining ("and”, "or", etc.) is subject
to error, in the contact system, this is obtained by merely making appropriate
connections. On the other hand, in a contact network, the introduction of
copies of an input is subject to error (by requiring additional contacts) and
a variable is copied in an electronic network by merely making appropriate

connections.

% ixi-u(ib with x, = 1
I, =3 withxino

*

55




Tolerable Errors of Neurons for Infallible Nets by Blum, Ernesto and

Verbeek (MIT)4 is an interesting paper — it would have been better if they

included an algorithm for the design of such error-free networks (if indeed the
procedure is algorithmic) or at least a little more detail which would substan-
tiate and explain the claims made in the paper. The networks formed consist of

n + 1 neurons for an n-input function arranged as shown below:

Fig. 2 Three-input neural net

It is somewhat similar to cur triangular network except that these
nets are nonhomogeneous. No hint is given at a physical model for the
type of network they discuss but the error-correcting properties are quite
astounding. The nets themselves have been presented before and as such
represent nothing new. However,the authors make the interesting comment also
made by several others at the conference that the choice of a simple majority
element for the combining or ocutput gate is a naive one to be made only in the
face of no knowledge about the reliability behavier of the components to be

combined (with the exception of a few special cases), and that knowledge about
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such factors as the nature of failures, and the bias (if any) of errors can

lead to a better choice.

"Codes and Coding Circuitry for Automatic Error Correction Within

Digital Systems" by W. H. Kautz (SRI)5 is one of the better papers presented
at the Symposium. Before discussing it, we would like to inject some general

comments about the idea of coding for error correction in digital computers. f
There are two distinct ideas represented here. One is the coding of infor-
mation to ensure accurate transmission or storage much the same as in
communication theory (and the problems are, in fact, the same). The other is
the encoding of information to ensure accuracy of computation or

logical operation., The former involves encoding of data in the hope that the
coded form will resist alteration of the information in the handling, but in
the latter the handling is expected to alter the information and the problems
are quite different. It is almost exclusively the former with which Kautz
deals. The latter problem is discussed in Gore's6and Hinogtad-Cowan'J papers

presented at the Symposium as well as in many papers not given at the Symposium
and will be analyzed in some detail later.

The coding for reliable transmission and storage depends on certain
simple properties of the words. Basically,the idea is a simple one -- enough
redundant (check) bits are added to each word so that the Hamming distance
(i.e., the number of bits in which two words differ) between any two words is
2k + 1 where k is the largest number of errors which it is desirable to correct
for. Then a received word is decoded as the word closest to (least Hamming
distance from) the word received. In actual practice a systematic technique
for generating code words is used in order to facilitate the design of equip-
ment to perform the task, but the principle remains the same. The coding is
generally a form of "block" coding and is encoded and decoded by a set of
linear operations (i.e., described in terms of "exclusive or" and its comple-
ment). (If the words were to be logically manipulated certain additional
constraints would be imposed to ensure that the check resulting from a compu-
tation is also a proper check). Kautz is concerned with techniques for
physically realizing these codes as well as the quantity of equipment which

is actually needed. He points out there are several types of systematic

it 8 W
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codes available; the usual group codes, the low density codes which require
greater redundancy of information (more bits) but are easier to encode
and decode, Berger codes which detect completely biased errors (all
0's or all 1's) and arithmetic codes suitable for checking the arithmetic
operations. These latter codes generally derive from number theoretic proper-
ties rather than from the logical properties which produce the other codes.
[Petersonsin a paper on checking an adder demonstrates that the only type of
checking possible where the adder and the checking circuitry are independent
is some form of remainder mod p check™].

Although it is possible to build multiple error-correcting circuitry,
the expense involved is usually so great that it is not done (with the
exception of special cases like completely biased errors or bursts of errors
in a set of adjacent locations). Kautz points out that 'signal redundancy
suffers from certain basic limitations: For all but a definable minority
of logical circuits, there exist some types of faults whose errors no amount
of signal redundancy can correct" (see discussion of noisy computation below).
He then goes on to say, ''this theoretical limitation need not overly concern
us, however, for three reasons. First, this minority includes several circuit
operations of considerable practical importance, such as simple data transfer,
parity checking, and linear (pure '"exclusive or") logical circuits
generally. Second we rarely need to protect a circuit against all possible
faults, but only a selected class deemed to be most likely. Third, recently
it has been shown that, under certain reasonable assumptions, a network
can be made arbitrarily reliable with the proper combination of signal and
circuit redundancies." ([Unfortunately, we have not seen the proof of this

third statement].

9
Quadded Logic by J. G. Tryon (Bell Labs.) presents a technique for

introducing redundancy into a logical chain. Essentially,it involves quadrupli-

cating the number of gates and then systematically interconnecting them so as

to mask faults. It is Tryon's hope to mask these faults as close to their

source as is possible. His approach is a qualitative one — he is not immediately

concerned with the question "how much does quadding improve reliability?" -

* A remainder mod p check is performed by carrying as check bits the remainder
when the word is divided by p. It then follows that the sum of the checks of

two numbers is the check of the sum (similarly the difference, product, quotient

in a fashion).
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he asks instead - "If the output of this gate is stuck high, how can I
correct for it?" If there are two stages of logic beyond the faulty gate,

then quadding is an answer; if not, quadding is not an answer.

Quadding is applied to a chain (gating or timing) rather than to a
single logical element. A quadded chain has four times the number of gates
of a nonredundant chain, and each gate in the quadded chain has two times
the fan-in and two times the fan-out of a nonredundant gate. The termination
of a8 quadded chain is four lines, and the decision with regard to how to
interpret these lines in the case that they are not all in agreement is out-

side of the domain of quadding.

In his report Tryon presents an algorithm for quadding which we will
partially reproduce. Tryon describes the technique for the quadding of
combinational logic built of "and'" gates, "or' gates, and ''inverters" by

three rules:

Rule 1. In circuits in which levels of "and'" and "or" alternate,
wiring patterns must be chosen so that no signal encounters the same pattern

twice in succession as it goes along.

So, for example, in the diagram of the quadded circuit the connection
pattern between the A and C gates is different from that between the C and E

gates,

Rule 2. Whenever an "and" unit feeds an "and' unit (or an "or" unit),
all wiring patterns feeding the first unit must be the same as that between
the first and second units. An example follows on the next page.
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The final rule includes the first two and is:

Rule 3. As any signal flows from the input of any "And" or "Or" unit,
along any path, the parity of the number of changes in pairing that it encounters

must be equal to the parity of the sum of (a) the number of negations and (b)
the number of "and"/"or" transitions.

Incidentally,negation is handled by applying De Morgan's laws to move
the negations to the inputs, quadding, and then moving the negations back (making

the appropriate changes.)
8
A C
D
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We also present. an example of a quadded circuit which should give the

flavor of the technique. Figure 3 is an example of a circuit in both non-
redundant and quadded forms. Consider the quadded version. If as shown all
the M inputs are 1's and all the P inputs are 0's, then the output of gates
Al - A4 should properly be 0's. Suppose A& is malfunctioning in such a way
that its output is a | instead. Then at the next level of logic ("or" gates
Cl - Cé) this incorrect 1 spreads to 2 gates Cl and C3 (assuming B] - B4 have
output 0). But at the following level of "and" gates, the situation is
corrected and the output is the proper "0" on all 4 lines. It is fortunate
that the "or' gates Cl - C4 were not the final level in the chain. Suppose,
on the other hand, that all the M's and P's are 1's and that the outputs of
the gates Al - A4 are proper 1's, but that the output of 04 is an incorrect

0 (while C, - ¢3 put out 1's); then the output of E, and E, will be O while the
output of E, and E3 will be 1. The required action is unclear!

This demonstrates that quadding requires at least two levels beyond
the source of a single error in order to correct for it; — this implies

that quadding is more effective as the chain increases. This would, in most
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technologies, prove a serious drawback since a) a chain terminates at a
storage element (flip-flop, memory, etc.), and b) the usual tendency in design
of a system is to try to keep the chains as short as possible to avoid deteri-

oration of signal and increased propagation time.

Tryon has managed to avoid these problems since he quads memory, timing
devices and even flip-flops. (The latter through an interconnected 'nor"

gate type construction of the flip-flops)

Fig. 4 Tryon flip-flop. It is composed of combinational elements
that may be quadded in the usual manner.

The fact is that quadding is distinctly oriented to a particular type of
equipment. (There is nothing wrong with this; in fact, we believe that the
type of redundancy to be used should be designed to fit the particular
technology. We state it only because we believe that it should be noted).
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Tryon goes further in the design of his technique than anybody else
whose work we have read. He has given serious thought to the problem of
maintenance of a redundant system. In a system which is designed to mask
faults, it is harder to detect faults. Consequently, it is more difficult
to locate failures, and so a redundant machine would be more likely to
accumulate them than would a nonredundant machine in which they are almost
immediately detected. As a result there is a crossover point in time where
if both a nonredundant and a redundant machine are still operating, the
redundant machine is more likely to fail. B. R. Saltzberg, a co-worker of
Tryon's, has devised a technique for isolating nonredundant segments of a
quadded network in order to check for failed parts. This technique (as an
interesting extra) demonstrates how redundant power supplies may be used to

protect the system against supply failures as well as logical failures.

Quadding as a technique is applicable to relatively good components.
In the face of reasonably high probability of multiple failure in a quad, it
is not effective. For the same reasons it is better suited to a situation
where regular maintenance will not allow multiple faults to accumulate. How-
ever, it does offer a method of introducing redundancy at a relatively reason-
able price (about eight times that of a nonredundant machine) and in a

substantially uniform way throughout the machine.

Adaptive Vote Takers Improve the Use of Redundancy by W. H. Pierce

(Westinghouse)lo presents a variation on the majority logic scheme of Von
Neumann. In this technique certain of the replicated organs are assumed to
be more likely to be incorrect than are others, and so less credibility is
attached to their decisions. In effect, a more consistently reliable record
is rewarded by a greater say in the final decision-making element, and as

failures occur the voting weights are continually adjusted.

This is the most complex system for introducing redundancy which we
have seen. Since one of the great appeals of a binary system is its relative
immunity to error, we find the introduction of the analog weight adjustment a
possible weakness. In addition we do not see the need for adjusting the weights
over a continuum since the threshold decision-making device will recognize only
a relatively small number of different functions of the inputs — perhaps
adjusting the weights discretely would help the reliability of this involved
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device. Also,the Pierce scheme is not intended tc improve the computation
part of the system, but is directed only at the decision maker. It intro-
duces an additional large (unchecked) system which appears to be another
likely source of error. Although we find the idea interesting and the analysis
a really intricate piece of work, we also find it impossible to consider it

seriously as a technique for increasing reliability.

W. H. Mann (Westinghouse) in Restorative Processes for Redundant

Computing sttems11 presents some very good solid thoughts on redundancy. The
first section of the paper discusses modes of placing restoring organs into a
system at desired intervals. He discusses the various effects of the distri-
bution of these organs on the system reliability. His discussion is really
really outstanding when he discusses common assumptions about components

and the way they fail and how these assumptions affect reliability analysis.

The most interesting of these comments follows:

Assumptions and their effects

1). The effects of highly improbable failure modes are negligible.

The flaw is that a failure which is improbable at the circuit level

may be highly probable at the large system level. For example:

Basic nonredundant system

System size 1000 stages
Signal processor failure probability 0.0005
Nonredundant system failure probability 0.394

All failures capable of restoration - Redundant system

Restoring circuit failure probability 0.001
Redundant stage failure probability 3.36 x 10-8
System failure probability 3.36 x !0-5

Redundant system with additional 0.1 percent of failures not capable of

restoration
Signal processor failure probability 0.0005005
Restoring checked failure probability 0.00100!
System failure probability 750.5 x 10-5
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2). A false 1 is as likely as a false O, This is the type of
assumption which would lead to a simple majority decision-making element.
1f, for example, vie considers a model like ours of the rectifier "and" gate
where the open diode acts as a 1, then the outputs of "and" gates are such
that all output 0's are correct but some output 1's are incorrect. If this
is the case an "and'" gate is the best choice for a combining element. If
the probability of a false O becomes positive the choice of combining func-
tion should move away from "and" on the lattice of Boolean functions going
close to majority as the probability of 0 and 1 get closer to equal and
finally towards '"or'" as the probability of O gets larger than that of 1.

Information Theory and Redundancy

This section will cover work reported over a long period of time by
many people. 1In pre-information theory days, the standard procedure used to
transmit binary information through a noisy channel was to repeat the trans-
mitted signal 2n+l1 times. Then at the receiving end a majority vote would be
taken to determine the nature of the transmitted signal. If n + 1 or more
1's were received the signal would be interpreted as a 1, otherwise the signal
would be interpreted as a 0. This is a simple example of an n-error-correcting
code (since if there are n or fewer errors the signal would still be interpreted
correctly). This obviously gives an increase in reliability, but at a price
— a decrease in the rate of transmission of information. [To be n-error-
correcting causes a decrease in transmission rate to Eﬁ;% times that of the
noncorrected case]. The probability of error for this particular system is

given by Po ~ Z-k/R

where R is the rate of transmission of information. By
decreasing the rate (R), P, can be made to decrease, but to make Pe arbitrarily
small it is necessary to make R arbitrarily small as well. Information theory
provided a different solution to the problem of increasing the reliability of
transmission of information. If one defines a quantity C (the channel capacity)
as a maximum rate at which it is possible to obtain mutual information from

the output of the channel about its input, then by a type of coding called
block coding it becomes possible to transmit information through that channel
with a probability of error given by P, = é g : 2 where R is again the rate
of transmission., [From this relation we see that C is also the maximum rate

at which it is possible to receive information over the channel with arbitrarily
high reliability]. To block code, take the sequence of bits to be trans-

mitted, break it into units k bits long, and encode each k bit sequence into
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an n bit sequence (n > k}; then transmit the n bit sequence. At the receiving
end, the n bit sequence distorted by noise is decoded into the proper k bit
sequence. If R, which equals k/n, is kept constant and less than C, then by

increasing both k and n the error probability may be made arbitrarily small.

But all the results we have presented thus far hold only for the case
that the information coming out of the decoder is intended to be the same
information which went into the encoder. But what of the case where the
information is not just being transmitted or stored, but is being logically
combined with other information (also appropriately coded); can block coding
provide a technique fcr obtaining arbitrary reliability in some more efficient
manner than the iterative methods mentioned above? Von Neumann, in his paper
on probabilistic losicsl,'3 expressed the opinion that it could, but just how
eluded him, Eliaslz noted that the techniques of replication and majority vote,
or iteration to improve reliability are much like the pre-information theory
techniques for reliable signal transmission. If, instead of building a
redundant computer operating at a higher reliability level, one chooses to use
the redundant elements to build extra computers operating at the old reliability
levels, then one could perform more (though less reliable) computation. So in
a sense the result is a trade-off of computation rate for reliability. Elias
set about investigating this question, by considering information to be com-
bined according to any of the 16 binary functions of 2 binary inputs. In
particular,he studied the "and” function (and then discussed its generali-
zation). Since maay of the later papers refer specifically to his results, we

shall reproduce his ingenious proct here.

K "AND"'CIRCUITS

ENCODER anol v ol —{DECODER
n -DIGIT DELAY | l—

Lﬁ-olcﬁ DELAY

-
KSTAGES ~ "~ — " ___ 4

E—[n—DIGIT “DELAY }

Fig. 5 Multiple "and" computer:
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The "and" circuit shown above takes the "and" of k successive n digit blocks
of coded input, using k-1 n digit delays and k-1 noisy "and" gates. We call
the input sequence consisting of k ones lk, and the sequence consisting of
k'joj etc. The n bit block which is the coded version
of s will be denoted by T(s), so T(lk) is the sequence which comes out of the
encoder when a sequence of k ones is put in. Consider the following set of
n-digit blocks which are possible results of this computation as they come

out of the last "and'" circuit before decoding:

k-j ones and j zeros |

ra® . ta® ...... Ta® - 10H

ra® - 0% ...... Ta® . 10* oY

%) - 0% ...... ¥ Yo"y T1¥ %02

)

e o o

% - 1a* %) ... ralo* !y - %
Each line can be obtained from the preceding line by "anding'" with one new
factor, since the "and" of T(Ik) with itself any number of times is still
T(lk). But adding a new factor by "anding'" can only strike out some of the
ones which are present in a sequence. All of the n digit sequences above
must be decoded differently, since they all represent computations having
different results (the proper result for each row is the argument of the
rightmost factor). 1In going from one line to the next we eliminate at least
one one., If we let di be the number of ones eliminated when passing from line
i to line i+l, then, since there are at most n ones in the first line and
at least no ones in the last line,we have

)

foin

di < n; d, >1

L

-—

It follows that if n < 2k some of the di will be just one and a single
error in the output can cause two adjacent lines to become confused, so that
the decoder will print out the wrong answer when such an error is made, if

it prints out the right answer when no errors are made.
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From this it is concluded that:

1) It is not pcssible to get a reliability for the block greater than
that present in the individual devices (reliability here being probability of

correct output) until the rate of transmission drops from unity(k = n) to

T Nj—

(2k = n) and even then there are single errors which the decoder can detec

but only attempt to correct, with probability % of guessing wrong.

2) The rate must drop to % (3k = n) before all single errors in the

computations shown above can be corrected. Notice that n = 3k has a familiar
ring and, in fact,if we must go to that much redundancy we could as well and
certainly as easily (from the point of view of decoding and encoding) go to
simple iteratioa of the ith digit of each block. So at least as far as minimum
distance between words between codewords is concerned, no block code (for the
computer considered) does better than simple iteration of the input

digits [and as mentioned earlier this leads to a capacity which is zero].

Elias considered all the possible binary functions of 2 inputs x, and x..

Of these, he conjectured that the only nondegenerate functions to whichlcoding2
could be applied to achieve arbitrary reliability were "exclusive or" and
"equivalence". But "exclusive or" and "equivalence" and any combination of

the degenerate functions of 2 variables do not form a complete set of propo-
sitional functions, There are Boolean functions like "and", “or!" which can
not be constructed from these functions,and so, in all likelihood,one could

not construct a complete general purpose computer from these block=-coded

functions.

Peterson and Rabinl3 prove the same results as Elias under somewhat more
relaxed restrictions, and in fact they are able to verify (algebraically)

Elias' conjecture. Their results are sumarized here:

1) For single-error detection codes which consist of the original
information with a check symbol, there is no simpler system than making the
check symbols duplicates of the information for any nontrivial logical
operations except "exclusive or' and "equivalence" both uf which may be

checked with "'parity digits’.,
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2) For general block crding with the cutput decoding one — one in
the absence of errors, and the ccded blocks processed digit by digit, for
"and", ''or", "exclusive-ox'", "equivalence' the same code must be used at
the output as at the inputs (assuming that in each case the sequence of all
zeros codes into the sequence of all zeros). For the other six nontrivial
logical operations the input and output codes are closely related. For all
logical operations except "exclusive or'" and "equivalence'", the operation
done on the coded blocks must be the same as the operation being checked.
For "exclusive or'" and "equivalence", each digit in the coded blocks is a
parity check on some subset cf the digits of the uncoded block. In other

words, group codes and only group codes can be used to check these two

operations.

3) For the same restrictions on coding as on (2), and for all non-
trivial logical operations except "exclusive or'" and "equivalence', there
is no simpler coding system with a specified ability to detect or correct
errors than a system in which the coded sequence consists of a number of

copies of the uncoded sequence.

Relying heavily on the previous results of Elias and Peterson-Rabin,
wuugrndlaextended these results to the m variable case (m > 2). His results
are summarized "Of all the 22" Boolean functions of m variables, only fn+l
functions are linear [and hence may be block-coded to advantage]; namely,

all functions which can be represented as f(x], esey xh) = ko + kixi

for some ki = 1 or 0. Of those £w+l functions only 2 are explicit functions
of all m variables, namely

n n

N " where  and + stand
E: *3 and 1+ 21, X e for "exclusive or"
i=1 i=]

Elias also pointed out that if we relax certain restrictions such
as insisting that the decoding at the output be one — one in the absence
of noise then we can do some of the computation in the error-free encoder
and decoder and improve our reliability. To this technique Elias applied

the rather graphic name, ''cheating".
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Again it may be said that this does not mean that only iteration
serves to check computer operations. If extra logical information is availa-
ble about the operation being performed, then an appropriate check may often
be designed, as, for example,a remainder modulo p check on an arithmetic unit.
In addition,if one thinks in terms of applying the checks to code the function
as well as the inputs and in addition "owns up" to the possibility of error in
the encoder and decoder then the coding may result in improved reliability
(though not arbitrarily high reliability).

Recursive Triangular Nets >* 16

The recursive triangular network has been described in previous reports,
It is, like the Shannon-Moorezprocedure an iterative technique for applying
redundancy and consequently the quantity of equipment used grows exponentially
with the number of stages of recursion. Very generally, the technique of

triangular recursion is this:

" 0" LEVEL GATE

"1" LEVEL GATE

N 41 LEVEL GATE

Fig. 6 Triangular recursion method
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Where the basic gate (whose reliability is to be improved) is the 0 level

gate the 1 level gate is formed by a triangle of n (the number of inputs —

in Fig. 6 n = 3) 0O level gates feeding a 0 level gate; and in general,

an N + 1 level gate is formed by feeding n Nth jevel gates into an Nth level
gate. The manner in which a gate fails as well as the way in which it
operates are factors which determine whether or not triangular recursicn can
be used to improve the reliability vf a gate, Our analysis of the reliability
of a gate derives from the idea that a failed gate computes a logical function
other than the one for which it is designed. This other logical function may
be a degenerate one insensitive to some of the input variables (or even all

the input variables as in the case of a gate stuck at 1 or 0), or it may just
be a different function of all of the variables. A set of recurrence relations
relate the probabilities of occurrence of each of these failure functions at

a stage of recursion to the value vf these probabilities at the previous stage.
In earlier reports these relations have been produced and analyzed for various
probability distributions over failure and design functions. Under certain
restrictions on the distributions, it is possible to continue recurring until
any arbitrary degree of reliability is achieved, but with most realistic
distributions, a maximum value of reliability is reached after just a few
stages of recursion, and if recursion is continued beyond the maximum, relia-
bility will drop off, eventually falling to zero. In the case of the simple
rectifier n-input "and" or "or" gate the probability of correct functional
operation goes from (l-p)n (where p is the probability of failure of a rectifier)
in the basic rectifier gate to very close to l-pn in a few stages of recursion.
This would mean, for example, that for a 4-input gate with a probability of
rectifier failure of .01 that the probability of failure of a gate decreases
from 3.94 x 10'2 in the nonredundant gate to 10-8 in the redundant gate or

by a factor of about 25000. Of course, the price paid for this would be very
high indeed — it would require 625 times the equipment in a nonredundant

gate. If an improvement factor of about 20000 would suffice, this could be
obtained at a cost of about 125 times the nonredundant equipment. These
quantities of equipment sound forbidding. They are (although Von Neumann

spoke of numbers on the order of 1000 to 25000 in his multiplexing technique).
Even if the economic considerations were not by themselves sufficient to bar
such a system, certainly considerations of power consumption and bulk would

exert a strong negative influence.
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However, considerable improvement in reliability is obtained at the
early stages of recursion where the amount of equipment required is not
nearly so large as in the examples cited above. The table below gives some

examples of improvement at the early stages of recursion.

Number N PN Po Equipment ratio
of Stage of Péﬁailu;e) at o redundant
Inputs P Recursion N~ Recursion N nonredundant
1) 3 0.2 0 .488 1 1
1 112 4.4 4
2 .011 44 16
3 .009 54 64
2) 3 0.01 0 3 x 1072 1
i 3x107% 100 4
2 3x 1077 10,000,000 16
3) 4 0.3 0 .76 1
1 .2 3.8 5
2 011 7 25
3 .009 8.4 125

Notice that case 2,which is the most striking of the 3 cases, represents
a gate made from components which are clearly worse than anything commercially
acceptable today — rectifiers which fail 1 cut of every hundred times they
are called on — (and cases 1 and 3 are considerably worse than that). The
point made here is that the triangular recursive redundancy is applicable t>
really pcor components — techniques like, for example, quadding are certainly
more reasonable to use in the case that the likelihood of multiple error is
small indeed, but in the case where the components are really bad and the
occurrence of multiple error is not unlikely, then only the recursive triangle

of all the techniques discussed is applicable.
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In summary, the recursive triangle requires large amounts of redundancy,
but it is able to make extremely efficient use of the '"extra" components. If
constructed with components with a low error rate recursive triangular nets
might be used to build equipment with an extremely long lifetime (e.g., for use
in a space craft taking a long journey). On the other hand the recursive
triangle might be considered as applicable to a situation where a great number
of components can be produced cheaply (and perhaps not too reliably), but it

is still desired to construct a useful system from them.

The present

The current’state of practice' of redundancy techniques as applied to
computing systems is yet far from anything discussed in this report. So far
as I can gather, people design conservatively and stock spare parts (usually
in the form of 'plug-in packages') on the one hand, and where the application
(and financial capability) warrant it, as for example,in satellites or defense
systems like SAGE , they introduce entire standby systems to be operated in
parallel or as they are required. Redundancy applied at levels lower than
duplication of the entire system is usually present in the form of extra
parity bits for detection of errors in information transfer and remainder~-
modulo -some-p checks for detection of error in arithmetic computation, with

correction of the errors provided by repeating any operation shown to be in
error.

Increased computation capability is a concept very easy to comprehend,
but the concept of increased reliability is not so well understood. In fact,
the former is regarded as a goal of the system while the latter represents
an obstacle (i.e., the enemy). Consequently the two have been separated,and
people find it easy to justify large additional expense for the former but
far more difficult to justify it for the latter. Of course,these two are
not at all independent, but until many more people come to think in terms of
the ways in which they are related, the systems which we have discussed in
this report will be slow to be adopted.
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The most ambitious that anyone has been getting at present (to the
best of our knowledge) is to attempt some of the techniques discussed in
Kautz'? paper which do not require large additional quantities of equip-
ment. If faced with an appropriate technology (and-or-not-quite reliable)
then a technique similar to what Tryon9 suggests could be the next step.
If on the other hand the technology calls for making use of very cheap but
unreliable components, then a very good case could be made for adopting
something like the recursive triangle. And between these two teclaiques,

cases are to be made for many of the systems which have been discussed.
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III. SOME THOUGHTS ON RECURSIVE TRIANGULAR NETWORKS
by S. Y. Levy

This report presents the results of a set of brief investigations
of Lhe properties of recursive triangular networks. It is divided into
three distinctly disjoint sections. The first establishes that in the case
of the three-input rectifier "and" gate (which we studied in detail in
Special Scientific Report No. 1) triangular recursion can be used to improve
the reliability of the gate no matter how unreliable the rectifiers are.
The second section deals with attempts to make use of the recursive triangle
to improve the reliability of a nonsymmetric Boolean funztion (ABvCD). Both
rectifier and threshold realizations are investigated. Finally, section
three deals with attempts to utilize the technique to improve the reliability

of a complete function '"nor'.
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PART I THE 3 INPUT RECTIFIER GATE

In the three input rectifier gate the probability of correct operation
p{ABC) = S = (l-p)3 where p is the probability of a rectifier malfunctioning.
In this section we will show that no matter what value p assumes in the
region (0,1), the first stage of recursion is always more reliable than the

basic gate (Sl > So).

Using the notation introduced in the previous reports p{T} = T,
p(A} = p(B} = p(C) = Q, p{AB) = p{AC) = p{BC} = R, p(ABC} = S, we write the

recurrence relation sl(Qo’ R, S, To).

3 2 2
SI = 3Q°So + lSRb + 3R.°So + 6R.OS°To + ISQOR.o

+ 18QRS + 18R2 S + 6Q 2 S + 24R 3s + 8 4
00 0 o o o "o o o o

+ 18R 2 ST + 38 2 T 2 + 3S 3 T + 63Q 2 RS
[o} [o o] o o] o [o] o] 0o o
+ 63QR2%2S +27Q%2s24+99s3+27r2%s 2
o O (o (o] (o] 0 O [o] o
+ 9RS >+ 18QRST +18Qs 2T
[o I o] 0O 00O o O [o]
+ 18RS 2 T+54QRS 2
[+ N ] 0O 0O O
2
Substitute Qo = p (1-p)
R, = p(i-p)°
5, = (l~p)3
T° = p3 into the above equation.

Then since we seek the region where SI > S0 we divide Sl by So = (l-p)3.
The polynomial which results is:

3

1+ 4p +6p2 - 12p° - 6p° + 21p° - 66p° + 108p’ - 72p% + 71p7.

It is plotted on the graph where it appears rather clearly that this ratio
is always greater than i, for (0 < p < 1). Since the improvement which
results from recursion is greater as the number of inputs increases it is
expected that the result holds for all n > 3 (and in fact Maitra has proved

the result for n = 2 as well).
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The significant feature of this curve is that 5 is always
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52— greater than ). For large values of P (the probability of

rectifier failure) the reliability S' 1s low despite the
S
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Fig. 7 Improvement ratio at first level of recursion
(3-input rectifier gate)
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PART II. THE FUNCTION ABvCD

Suppose first that it is desired to synthesize the function ABvCD
from a network of rectifier gates, Suppose further it is desired to make
use of triangular recursion to improve the reliability of these gates. How

should the recursion be applied? There are two obvious alternatives.

1) Apply triangular recursion to a basic triplet consisting of two "and"

gates feeding an "or" gate

Ag (D

LEVEL | RECURSION

2) Apply triangular recursion to each of the gates which compose the
basic triangle

LEVEL | RECURSION

Then first consider Case 1. Tabulate the behavior of a zero level gate.
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Symmetry type

Number of resulting from
failures p{n failures) these failures
0 a-pt ABVCD
p(l-p)5 BvCD
AB
2 p2(1-p)* T
AvC
A
F
AB
3 p’-p)’ T
F
AB
4 p4(l-p)2 T
F
A
5 p>(1-p) F
T
6 p6 F

Number of members of
that symmetry type

which can occur as a
result of n failures

-

- S NN D= s

The probabilities associated with the different operating states at the

basic triangle level may be computed easily with the aid of this table.

Since the purpose of this report is only a brief inspection of this problem

we will assume a value for p, and compute the probabilities.

p=0.1

The distribution of operating states in the basic gate is:

p(ABVCD} = (1-p)® = .53

p{AvCD) = p(BvCD} = p{ABvC]} = p(ABvD} = p(l-p)5 = ,059
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p(AB) = p(CD} = p(1-p)° + 2p2(1-p)* + p>(1-p)° = .073
p(AVC) = p(AVD) = p(BVC} = p(BvD) = p’(1-p)* = .007
2 4 3 3, 4 2
p(A} = p(B) = p(C} = p(D} = p"(1-p) + 2p (1-p)” + p (1-p)” = .008

4 3 4 2 5
p(T} = ZPz(l-p) + 6p (I-P)3 + 5p (1-p)” + 2p"(1-p) = .018

2 4 3 3 4 2
p(F) = p"(1-p) " + 4p~(1-p)~ + 6p (1-p)" + 4p5(l-p) + p6 = ,010

With the aid of the following tables we can compute the recurrence

relation which will tell us the probability distribution of the operating
states in a first level recursion. Each of the following charts represents
the resultant function of the first level triangular gate when the apex
gate is a particular function (fixed for each chart) and the inputs of this
apex function are specified by the left column and the heading of each
column., [These charts are read like the mileage charts on road maps]. For
example,if the apex gate is performing the function A' B' (see chart I) and
lines A' and B' are the function ABvD (the next to the last row) and ABvVC
(the third column from the right) respectively, then at their intersection
ABvCD is the resulting function. Notice also that charts I and II are half
shown., Therefore, when totalling combinations, each entry with the exception

of those along the main diagonal is assumed to appear twice.

In order to calculate p{ABvCD}, it is first necessary to compute the
probabilities of the states which result from a conjunction of 2 lines
feeding the apex gate. These are easily taken from chart I. (Notation: we
will use the name of the function to stand for its probability -- thus (AB)
is p(AB}).

First, we will calculate probabilities of a network pertorming a particular

function when the apex gate is performing a conjunction.

These probabilities are conditional probabilities - actually

(AB) = p[ABI Apex gate is conjunction} and similarly for the other probabilities.
(ABVCD) = (ABvVCD)([2[4(AvC) + 4(AVCD) + T) + (ABvCD)] + 4(AvCD)(BvCD) = .646
(AB) = (CD) = 2(AB)[(T) + 2(A) + 4(AvC) + 4(ABvC) + (ABVCD)]

+ AB)2 + 2(A)(B) = .126
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(A(BVCD)) = (B(AvCD)) = C(ABvD) = D(ABVC) = 2{ (A) (BvCD)

+ (A)(ABvCD) ] = .0094

(ABC) = (ABD) = (ACD) = (BCD) = 2(AB)(C) = .0012

(ABCD) = 2(AB)(CD) = .011

2

(F) = 2F(1-F) + F" = .02

The next step in our calculation is to compute the probability of the func-

tion ABvVCD resulting from the recursion. As before we will enumerate around

the apex function.

Apex function

p{ ABvVCD|Apex function}®
Combinations yielding ABvCD p{Apex function}

A'

A'vC'

A' B'

A'vB' C!

A'B' vC' D'

(ABVCD) 4(.008)(.53) = .017

(ABVCD)2 + 2(AB)(CD) + 2(ABvCD)[(F) 4(.007)(.464) = .013
+ (CD) ]

(ABvCD)? + 2(ABVCD)[(T) + 4(AVC) 2(.073)(.64) = .09
+ 4(AVCD) ] + 4(AvCD) (BVCD)

Note that an asterisk indicates that
the member results from conjunct
term and its value is taken from the
preceding table

4(AB) (C(ABVCD)), + 4(ABVCD) (ACD)
+ 4(A§yCD)(A(BvCD)) + (ABvgD) (ABLD)
+ (ABVCD) (ABvLD) + 2(AB)(¢D)

+ 2[ (ABvVCD) (AB) 3 (AB)(ABVCD) ]

+ (ABvCD) (F) + (F)(ABvCD) 4(.059)(.630) = ,149
Here all terms which appear result

from a conjunction.

4(AB) (ABVCD) + 2(F)(ABvCD) + (ABvCD)?
+ 2(ABVCD) (F) + 8(AB)(C(ABVD))
+ 8(ABC) (ABVCD) + 8(A(BVCD))(ABVCD)
+ 2(ABvCD) (ABCD) + 8(A(BVCD)) (C(ABVD)).
(.53)(.877) = .465
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Therefore p{ABvCD} = .017 + .013 + .094 + .149 + .465 = ,738 which is
greater than .53 which is the p(ABvCD] in the basic gate. But this
improvement has been bought at a cost of 5 times the amount of equipment

in a nonredundant gate.

If we consider the second configuration described earlier in the
report, where we applied recursion directly to each 2-input gate which
composed the basic network, then one level of recursion (shown) costs only
3 times the amount of equipment in a basic gate. 1In an earlier report
(Maitra) the probability of successful operation of a first level triangle
of 2-input rectifier gates with p{rectifier failure} = 0.1 has been calcu-
lated. It is 0.940. Successful operation of the function ABvCD requires
that all three triangles operate properly. This occurs with probability
(.940)3 = ,830 which is greater than .738 and has been obtained at a cost
only 3/5 as great. This preliminary study, then, appears to indicate that
the simple basic gate is the more promising level at which to apply triangular

recursion,

The Threshold Logic Realization

In addition to a realization of the function ABvCD using rectifier
gates we attempted a realization using threshold gates. As in our previous

report (Special Scientific Report No. 1) it was assumed that errors in operation
resulted from variation in the bias.

The first threshold realization we considered was:

In this case recursion yielded no stability under threshold variation.
The upper gate can be made more reliable by recursion but the lower gate

cannot. So we attempted to use the same network as before to synthesize
the function:
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Again our assumptions are that errors in operation result from

variations in the bias. These variations are represented by a normally

distributed noise signal superimposed on the bias signal and centered at

the appropriate level. Equally weighted two input threshold gates can

realize only 4 positive Boolean functions: the constant T (or 1), Disjunction
(or), Conjunction (and), the constant F (or 0).

The tables for the resultant function again taken for each apex

function follow

AB ©D ¢ D c F
T T T T T
D T  AVBVCVD  AvBvCD AVB
c T  ABvCWD  ABvVCD AB
F T CcvD cp F

AB &P ¢ D c F
T T CvD cD F
D AvB  (AvB)(CvD) (AvB)CD F
c AB  (AB)(CvD) ABCD F
F F F F F

Apex function
Disjunction

Apex function
Conjunction

The probabilities for the basic gate can be computed from the tables. The

notation used below 1s:MN is the probability that a gate which is intended

to be an N gate is an M gate;thus,CD is the probability that a disjunction

(or) gate will act as a conjunction (and) gate

2 2
p{T} = T, + CD[’I‘C 1+ I)D[zrC - T ]

2 2
p(F) = F + C [2F, - F,"] + Dp[F.")
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C

p(AB) = p(CD) = D C.F. + C C.T,

p(AvB} = p{CvD} = DyD.F. + CpPeTe

p{ABvCvD} = p{AvBvVCD]} = DDCCDC

p(ABvCD) = DC

p(AB(CvD)} = p{(AVB)CD} = D
2

cp®p
p{AVBVCVD} = DDDC
2

p(ABCD) = C,C,

p(ACVADVBCvVBD]} = DCCD2

If we consider o = 0.50 in our normal distribution, then

Cc = DD = .6826900
DC = CD = .1573050
TD = Fc = ,1586550
Tc = FD = .0013500

Inserting these values into the equations on the previous page, we get:

p(T) = .1604961

p{F} = .06052949

p(ABvCD} = .3181783

p{AB) = p(CD} = .0741341

p(AVB) = p{CvD} = .0170767
p{ABvCvD} = p(AvBvCD} = .073314
p(AB(CvD)} = p((AvB)CD) = .01689
p(ABCD) = .073314

p(AvBvCvD} = .01689
p{(AVB)(CvD)) = .01689

We are recurring the entire network as in the first case and we shall
develop our expression around the functions of the apex gate. Again,we
make use of charts to assist our calculation and we use the same abbreviations

as before (x) = p(x]).
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Combinations Yielding ABvCD

Apex gate

2(AB)

2(AvB)

ABvCD

AB(CvD)

ABCD

(AvB) (CvD)

2(ABVCD)T + 2(ABVCD) (AVBVCD) + 2(ABVCD) (ABvCVD)
+ 2(ABVCD) (AVBVCYD) + (ABVCD)>

This expression (above) will be denoted by  and the corresponding
expression when the apex function is AvB will be denoted by B.

In addition the probability of a function F resulting from either
an AB apex or an AvB apex will be denoted by (F)a or (F)B

respectively.

2(ABvCD) (F) + 2(AB)(CD) + 2(ABvCD)(AB) + 2(ABvCD)(CD)
+ (AB'V(!D)2 + 2(ABvCD) (ABCD) + 2(ABCD)(AB(CvD)) + 2(ABvCD)((AvB)CD)

2(a)(F) + 2(AB,)(CD,) + 2(a)(AB,)+2(a)(CD) + (0)2 + 2(a) (ABCD )
+ 2(ax)([AB(CVD) ] a) + 2(a) ([ (AvB)CD] a) + 2(ABVACVADVBCVBDVCD) o

(a)(Fa) + (@) (B) + () (ABB) + (@) (cpy) + (B)(F) + (B)(AB))

+ (B)(CD,) + (CD,) (ABy) + ([AB(cvD) ] ) (B) + ([AvB)CD] ) (B)

+ (CDB) (AB) + (a)([AB(CVD) ]B) + (a)([(AvB)CD]B) +(ABCD ) (B)

+ ([ABvACDvBCD]a)(B) + ([ABvACDvBCD]a) (an) + (Ancns) (@)

+ (o) ([ABvACDVBCD],) + ([ABVACDVECD];)(CD,) + ([ABCVABDVCD])(8)
+ ([vaABDvcn]a)(ABB) + ([ABCVABDVCD]B)(Q) + ([ABCvABDvCD]B)(ABa)
+([ABCVABDVCD] ) ([ABVACDVECD ] B) + (a) ([ABCVABDVACDVBCD ] f;)

+ ([ABCVABDVCD]B)([ABVACDVBCD]B) + (B) ((ABCVABDVACDVBCD] )

(TP () + (@)(B) + ([ABvch]a)(B) + (@) (TB) + (a)([ABVCvDIB)
+ ([AvaCD]a)(B) + ([AvaCvD]a)(B) + ([AVBVCD]B) + (a)([AVBVCVD]a)
+ ([ABvACvADvBCvBDvCD]a) () + (a)([ABvACvADvBCvBDvCD]ﬁ)

2)(T)) + ()% + 2([ABVCVD] )(a) + 2([AvEvED] ) (2)
+ 2([AvaCvD]a) @ + 2([ABVACvADVB(‘NBDvCD]a) (@)

2B)(Ty) + 82 + 2([ABvCD] ) (B) + 2([AvBvCD],)(E) + 2([AvaCvD]B)(B)
+ 2([ABVACVADVBCVBDVCD ], ) (B)
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(AvB)v(CvD) 2(B)(F) + )% + 2(8) (ABg ) +2(p)(CDy) + 2(AB,; (CDy )
+ 2([AB(CvD)]5) ®) + 2([AvB)CD] )(B) + 2(ABCD, )(B)

+ 2([ABVACDVBCD] Y(g) + 2([ABvACDvBCD] )(cn ) + 2([ADCVABMD] Y (R)

+ 2([ABCVABDVCD] )(AB ) + 2([ABCVABDVCD] )([ABVACDVBCD] )
+ 2(6)([ABCVABDVACDVBCD] )

F = 2F-F2
Qa

(AB) , = (CD),

(ABCD) a =

(AB(CVD) ]a
{ (AvB)CD] a "

(ABvVACVADVBCvBDVCD ]a -

[ABvVACDvVBCD] a
{ ABCVABDVCD] o ™

(ABCVABDVACDVBCD] a

ABB - CI)B =

[AB(CVD) g =
[(avB)CD]g

2(AB) (ABvCD) + (AB)? + 2(AB) (AVB) + 2(AB)(T)
+ 2(~B) (AVBVCD) + 2(AB) (AVBVCvD)

2(ABCD) (1-F) - (ABCD)?

2(AB(CVD))(T) + 2(AB(CVD) (ABVCD) + 2(AB) (CvD)

+ 2(AB)(AB(CvD)) + 2(AB) ((AvB) (CVD)) + 2((AB)(CvD))(AvB)
+ 2(AB(CvD))(CvD) + 2(AB(CvD))(ABVCVD)

+ 2(AB(CvD))(AVBVCD) + [AB(CvD)1?

2 (AvVBvCD) (ABVCVD)

2 (AvB) (ABvCD)
2((AVB) (CvD)) (ABvCD)
T2

2(AVBVCYD) (T) + (AVBVCVD)®

2(AVBVCD) (T) + (AVBVCD)>

2'1‘-'.[‘2

F2

2(AB) (F) + (AB)? + 2(AB)(AB(CvD)) + 2(AB)(ABCD)

2[ (AB)(CvD) ](F) + (AB(GVD))? + 2(AB(CvD))(ABCD)
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[ABCD], =

[ABvACDVBCD] 8"
[ABCVABDvVCD] g "

[ ABCVABDVACDVBCD ] g™

[AVBVCVD]B -

[ABvaD]B =
[AVBVCD]ﬁ =

2(ABCD)F + (ABCD)>

2(AB(CvD)) (CD)
2((AvB) (CD)) ((AB)(CvD))

2(AvBvCvD) (1-T) - (AVBvVCvD)? + 2(AvB)(CvD)
+ 2(AVB) (ABVCvD) + 2(AVBVCD)(CvD) + 2(ABvCvD) (AvBvCD)

2(ABvCVD) (F) + 2(ABVCD) (CvD) + 2(ABvCD) (ABvCvD)
+ 2(AB) (CVD) + 2(ABVCVD) (AB) + 2(ABvCvD) (CD)

+ 2(ABvCvD) (CvD) + (ABvCVD)? + 2(ABvCvD) (AB(CvD))
+ 2(ABvCvD) (AvB)CD) + 2(ABvCvD) (ABCD)

+ 2(ABvCvD) ( (AVB) (CVD))

[ABVACVADVBCVBDVCD ] 5" 2[ (AvB) (CvD) ] [ABvVCD)

Then plugging the values into these expressions get:

By
[ABVACVADVBCVBDvCD] -
(AB), = (CD)
(ABCD) ,

(ABVACDVECD) , =
(ABCVABDVCD) |
(ABCVABDVACDVBCD) |
(AvaCvD)a

(AVBVCD) , = (ABvCVD)
T

a
[AB(CvD) ], = [(AvB)CD]

Fg

(ABVACVADVECVEDVCD)
(AB), = (cD),
(AMD)B

11739516 a = 30742597
.01074988
.09237438
.1323777

0471757
.01086687
«0057058
.0057058
.025758998
.03095794

a

.0036638 B = .3132488 1

.01074806 j
.0278448 ‘
.0142649
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(ABVACI)VBCD)B = (ABCVABDVCD)ﬁ .0025042

(ABCVABDVACDVBCD)B .01074988

(AvBvevD) 04441408

(AVBVCD), = (ABVCVD), 1164174

TB «2952332

[AB(CvD) ]B = [(Avls)cn]fs .0048

and finally p{ABvVCD) = ,245 which is less than .318, the

probability of correct operation of the nonredundant gate.

In addition the usual recursion of the basic gate yields no improvement
in reliability,and it appears that in this case triangular recursion is of

.

>

no value for improving the operation.
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PART III. THE NOR GATE

Up to this point, we have not actually applied recursive triangulation
to a complete set of Boolean functions - that is a set from which any Boolean

function can be synthesized. The "nor" gate is such a function. Consider

a rectifier transistor realization:

——

vvvvvvvvvv

) -1}
[ 1
o™

B+

VWA

B-
Fig. 8 Nor gate

If we consider only the active components failing then the distribution
of functional states resulting from the component failures are A, B, T, A8,
XE, iﬁ, Kié, T, F. These are the same as in the case of the 3-input rectifier
"and" gate except for the addition of the state F. If we apply regular re-
cursion then 1 level of recursion can not yield the "nor" function and, in
fact, from one level on the function computed will be positive. So we seek
the best combining element for '"nor'" gates. We know from our studies of the
rectifier gates that the "and" gate would be the ideal combining element
were it not for the presence of the F. So we will study the effect of the
F if we attempt to combine three "nor'" gates into a first level recursive

triangle.

We assume mixed technologies (more than one type of gate available).
The object of the study is to determine how we could best improve the
reliability of the "nor" gate. The technique used compares 3 combining
elements -- a rectifier "or" gate, a rectifier "and" gate, and a majority

gate.
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A. Rectifier "or" Gate Combining Element

ABC ABC ABC

The distribution on the nor gate is again over X, B, C, ZTB, ic, ﬁa, ABC, F,
T, p(F} = p_,using a rectifier "nor" gate as shown,with p = 0.2,and using
10

the notation of the previous report:

Q = p{A} = p(B) = p(C) = pz(l-p)(l;%) = (.04)(.8)(.98) = .0314
R = p(AB} = p(AC) = p(BC) = p(1-p)“(1=p) = (.2)(.64)(.98) = .125
T = p(T} = (p3)(1;2) = (.08)(.98) = 180785
s = p(ABC) = (1-p;g (1=p) = (.512)(.98) = .504
p(F} = .02 0

The only way to get ABC from this combination is to have at least one

of the input gates functioning properly and the diode fed by that gate also
functioning properly.

p(ABG) = 3(p3)(1-p) (.508) + 3p(1-p)? ((.504)% + 2(.504)(.02))
+ (1-p)3 (€.506) + 3(.504)% (.02) + 3(.504)(.02)%)
= 3(.032)(.504) + 3(.128)((.504)% + (.504)(.04))

+ .512 ((.504) + (.06)(.506)% + 3(504)(.02)2)

= 0484

p(ABC) = ,227 no improvement;in fact,a decline.
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Notice that if the combining gate is improved by triangular recursion to
its maximum reliability p{or} = .991 that the probabilities of sensitivity
to only 1 or only 2 inputs goes effectively to 0 and the only term which

need be considered is the final term.

p{xiél = (,991)(.144) = ,143, still more of a decline.

In fact, a comparison of this calculation with the last shows that
greater improvement results when the combining element is not operating as
an "or" gate but rather when it is malfunctioning.

B. "And" Gate Combining Element

The recurrence relation is almost identical with the relation es-
tablished for the "and" gate except that a factor should be added to ensure
that no input function is F.

p{Nor} > p{first level and gate recursion} * p{no input F}
= (.889)(.98)° (.889)(.9) = .837 an improvement.

In addition,suppose that the apex gate is improved by triangular recursion
to be most reliable. Again p(AB),p(A) etc.,, go to 0, so that the only
combinations left to yield 'nor" are the following

[s] [6Q° + 24R% + 5% + 18QR% + 31%s + 37182 + 63Q°R
Apex
2 2 2 2 2
+ 63QR% + 27Q% + 3082 + 27R%s + 9Rs? + 18QRT
+ 18QST + 18RST + 54QRS)
s = .991
Apex

Then, substituting:

(.991]06(.0314)3 + 24(.125)3 + (.504)> + 18(.0314)(.125)2

+ 3(.504)(.0785)% + 3(.506)2 (.0785) + 63(.0314)2 (.125)

+ 63(.0314)(.125) + 27(.0314)% (.504) + 9(.0314)(.504)2
+27(.125)% (.504) + 9(.125)(.504)% + 18(.0314)(.125)(.0785)
+ 18(.0314)(.504)(.0785) + 18(.125)(.504)(.0785)

+ 54(.0314)(.125)(.504)] = .975, a decided improvement.
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C. Majority Gate Apex Gate

ABC ABC ABC

Since we are trying to demonstrate that the "and" gate is the
superior combining element, we can only emphasize the point if we assume
that we are working with a perfect majority gate. Now using the tables
on the next two pages and expanding around one of the 3 input gates:

p(ABG) = F[6QR + 6R? + 25T + §>

+ 25(1-F-S) ]

+ T(5% + 25F)

+ 3Q[S% + 2BS + 2FS + 2RF)

+ 3R[S% + 4RS + 2QF + 4RP + 2R® + 25F]

+ 8[8% + 25(1-8) + 2F(1-F) - 2SF + 2TS + 6R® + 6QR)
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A A

) B 0B

c Aaé B¢ c

iB AB AB AB¢ X8

{4 AC i8¢ AC ABC X

BC ABC R BC ABE ARG B

ABC ABC XBE ABE ABC ABC ABE  ABC

T A B T AB Ad BG ABC T

F F F F F F F F F F
A a

B AVE 3B

c AvC BWE €

AB A B c A8

AC A B 4 A(EVT) AC

BC 2 B T B@AvC) C(AvB) BC

ABC X 3 T i i BC ABC

T T T T T T T T T

F A 3 [4 AB ac BC A T F

This chart and the one following are for the case that the apex gate

is a perfect majority gate.
of the three input gates.
input gate.

The two dimensions of each chart stand for two

The label on each section stands for the third
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[.02](6(.0314)(.125) + 6(.125)% + 2(.504)(.00785) + (.504)°

+ 2(.504)(.476)]
+ [.00785][(.504)% + 2(.504)(.02)]

+ [3(.0314) 1[(.504)% + 2(.125)(.504) + 2(.02)(.504) + 2(.125)(.02)]

+ [3€.125)10(.506)% + 4(.125)(.504) + 2(.0314)(.504) + 4(.125)(.02)
+ 2(.125)% + 2(.504)(.02)]

+ (.506)[(.504)2 + 2(.504)(.496) + 2(.02)(.98) + 2(.00/85)(.504)
+6(.125)% + 6(.0314)(.125)]

= ,74355

This represents an improvement, but not nearly as great an improvement as

with the "and" gate.

Suppose that we assume & much higher probability of F,occurring say at

p(F} = .2
Then Q = .0256
R = .1024
S = .4096
T = .0064
P = .2

In the case of an "or' combining element, p[ii&] = ,2490 (>.227, the previous

value), but still not an improvement over the basic gate.

In the case of an "and" combining element, p(ABC} = (.89)(.8)3 = 455,
& decline over the previous value (.837) and only a small improvement over
the basic gate reliability. So the effect of the "and" combining element
appears to be quite sensitive to the value of p{F).

Finally, the majority gate combining element yields p{ﬂﬁé) = ,675,
which represents a decline in the previous value but not as great as the

decline which resulted with the "and" gate combining element. If instead
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of the perfect majority gate we had assumed a majority gate similar to the
type discussed under B. above then the values corresponding to p = .02 and
P = .2 would be .687 and .631, respectively, a decline as before but

actually a relatively insensitive reaction.

This last part has demonstrated that the choice of combining element
is greatly influenced by the probability of the operating state, F. 1In the
case that this probability is very small (the case more likely to actually
occur) the "and" gate is the better combining element; as this probability

increases the majority element begins to be more promising.

110

porod poamd bwwd Powd oy

-

IS OB N el pend et b



et pumey Py ey e

Al N awm -

IV, ON THE USE OF FEEDBACK IN LOGICAL NETS
TO PROVIDE SELF-CORRECTING CAPABILITIES
by C. V. Srinivasan

A. INTRODUCTION

The problem of developing techniques to construct reliable logical nets
from inherently unreliable component devices is intrinsically of great value
to computer designers. Considerable amount of creative talent has been
directed in recent years toward discovering effective and practical solutions

to the problem. Surely, there are many reasons for interest in this problem.

It is reasonable to expect that in the not too distant future it will
be technologically possible to fabricate complex logical nets containing
possibly millions of logical component units, each of which will be capable
of operating at the rate of many millions of operations per second. Such
units are likely to be of extremely small size. Also, it is not difficult
for a computer engineer to conceive of a need for such large systems; the
biological systems always provide the necessary inspiration. In such systems
even & very small transient error probability of, say, one in a billion operations
per component unit, is likely to cause millions of errors in the calculation
every second. Hence; in order to make any meaningful computation at all, some
form of automatic error correction is necessary. Further, in such systems
having millions of components there will always exist some inevitable error
in fabrication; and in the case of microminiature components, repair and
maintenance will require replacements of basic modules, each such module
being a fairly complex logical net. Therefore, to minimize the cost
of such systems it is necessary to introduce some redundancy in their struc-
ture, so that a few failures will not necessitate a replacement of an entire

module.

It is also true that the present-day computers are being frequently
used to perform ambitious tasks,and oftentimes in such applications the cost
of an error will be very high. So it is very important to construct nets
of high reliability. In satellite systems, for example, the requirements
on reliability are particularly severe, as in such systems error checking
and maintenance by a human being is impossible, or, at least, is likely to
be extremely costly. The above requirements have only introduced an

urgency in the need for finding a solution to the problem of 'reliability’.
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To define the concept-of reliability of a logical net more precisely,
it is necessary to understand the nature of errors and/or failures that are

likely to occur in such nets and how one would wish to combat them.

A logical net, F, having m input lines and one output line, usually
will perform a mapping of the values assumed by the input lines to the
values that the output line can assume. Let us denote such a mapping by

the logical function,

fr X)) = vy, (1

where 51 is a possible valuation of the input lines and Y; is the corre-
sponding output value. The net might have been designed to realize a
desired logical function, fg, and because of the possibility of erroneous
operation of the logical components used in the net it is likely that fg is
sometimes different from fg. If the errors in the net are transient, (we
shall, hereafter, refer to this type of errors as Type I errors) then in a
sequence of successive input-output mappings performed by the net (we shall,
hereafter, refer to such a sequence of mappings as a computation done by
the net) an input-output pair (Ei, yi) that does not satisfy the logical
function, f;, is likely to be followed by other pairs that do. However,
every particular erroneous mapping (we shall, hereafter, refer to an
individual mapping as a calculation) performed by the net was left uncor-
rected. To combat this type of error one would like to design nets in
which the probability, Py» of occurrence of an erroneous calculation is
minimized. The smaller this probability is,the more reliable will be the

calculations performed by the net.

In order to simplify calculations of error-probabilities in the case
of transient errors, it will be necessary to make some assumptions on the
probability distribution of error-occurrence as a function of time. To
begin, we would like to assume that the probability of occurrence of a
transient error would remain a constant for a sufficiently long period of
operation of the net, as shown in Fig. 9.
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Fig. 9 Probability of occurrence of a transient
error in a logical net, as a function of time.

As the period of operation of the net increases, due to an aging
process, the net may deteriorate, thereby increasing the probability of
occurrence of an error. To combat such deteriorating situations, one will
have to develop some means of recognizing such deterioration and properly
replace some components in the net. This calls for entirely diiferent
techniques of combating errors,and a discussion of this will be best done

under a different error category.

Another assumption on transient error distribution will be that the
probability of occurrence of such errors in guccessive calculations would
be independent. This assumption is made primarily for the purpose of
simplifying calculations to obtain error estimates. The scheme of error
correction we shall employ does not depend on this assumption for successful
operation. However, an estimate of improvement for the above case of inde-
pendent probability distribution for successive calculations, will give us
some idea about how effective the error-correcting had been. We may, there-

fore, write for Type I errors, that, for an input valuation, Ki’

f; (%;) with probability (1-p,)
&) = 1 2)
2; (51) with probability P;-

in the case of nets where each input and output line assumes at a time only

one of the two values 0 or 1 (f: is the complement of f;). Generally, the
probability py could be a function of gi. In such a case one could safely
choose the largest p; as the first measure of unreliability of the net. Let

Max p, be called p'.
i i

113




However, if a permanent error (we shall, hereafter, call this Type II
error) occurred in a net due to, say, the breakdown of a component in the
net, then in a computation performed by the net, the outputs after the
instant of occurrence of the error are likely to correspond to some other
arbitrary function, fE’ or it may even just remain at a constant value. In
the former case, if one knew what error occurred one could perhaps just
use an appropriate additional calculation for error correction. In the
latter case, of course, the net has to be replaced or repaired after
the recognition of the error, and this requires that the computation be
temporarily stopped. It is clear that to do any error correction, recog-
nition of the error would be essential. To combat this type of error it
is necessary either to construct nets with components of a very
low probability of complete breakdown or to build into the net a capa-
bility to repair itself. Repair could be through error diagnosis and
component replacement or else through a direct substitution of an alternate
net in place of the one that had failed. Such error correction could be
done also in anticipation of a failure due to, say, an aging process,

referred to earlier.

If the probability of occurrence of a need for replacement, during a
calculation is p" and p" remains a constant for a sufficiently long time,
then one may choose p'" as the second measure of unreliability of the net.
Or, the expected value of the life of a net — the life being the
period before the first repair — may be chosen as the second measure of
reliability.

Two general techniques of interest and of some promise are at present
known for designing logical nets having a p' (probability of occurrence of
a Type I error) less than that of the component parts used in the nets.
These two schemes also improve, to a certain extent, the second measure of
reliability — viz.the life of the net. The first is von Neumann's3
majority-vote-taker scheme and the second is the triangular recursive

15,

scheme 16 developed at this laboratory. In both cases errors in calcu-

lation are masked by the superfluous calculations that tend to reinforce

preferentially the probability of generation of the correct output. Both
these schemes do not offer the capability to detect and diagnose the
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occurrence of errors. One might, therefore, say that these schemes are, in

a sense, passive., The second scheme is even further restrictive, because it
will not result in an improvement of reliability in all possible logical
functions. ("not" function is a typical example where the triangular recursive
scheme is not applicable.) However, for those functions for which it is
applicable, the triangular scheme will yield greater improvement in reliability
than the majority-vote-taker scheme. Thus, by the proper use of both the
schemes, one may introduce a considerable improvement in the reliability of a

logical net.

Logical nets that are designed to serve usefully for a long period
of time should have some facility to combat the effects of deterioration
of component units due to aging or other external interference. One would
further like to have such a net take preventive measures to avoid a failure
that may be anticipated. Such features will extend the expected life of a
net. The passive schemes described above will not provide these capabilities.
Some form of active error correction through error-detection and -repair is

definitely called for to extend the useful life time of a logical net.

Such a self-correcting net would have to be basically a sequential
net with a finite meﬁory. The general problem of automatic error diagnosis
and repair in logical nets with memory, seems to be a very difficult problem:
at least, the presently available concepts appear to be inadequate to develop
and analyze significant techniques].'8 In this report we present a simple
scheme which, in a sense, is self-correcting. However, the correction is
achieved through the substitution of a new unit in place of another that
produced an erroneous calculation and not through error diagnosis and repair
at the component level. In the context of this model, the problems that
arise in the design of such nets are pointed out. This method of correction
may be uniformly applied to all logical nets, as long as new substitutes are
easily available. It is our contention that diagnosis and repair at the
component level are essentially the properties of systems that possess the
facility for practically unlimited growth — we have in mind systems that can
produce practically unlimited quantities of the basic cells with which they

are made,
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Clearly, for a given component reliability, every improvement achieved
in the reliability of a net, composed of the given components, has to be paid
for in some form or other. 1In the passive schemcs the designer is required
to pay in terms of the increased number of components used in each net, and
the consequent increased delay in operation. However, the designer does not
have much control over the amount of time that a net will consume to perform
an operation. Further, the amount of time delay will remain the same irre-
spective of whether an error occurred during a calculation or not. 1In the
case of error detection and repair also the designer will have to pay in
terms of greater number of components and greater time for computation. But,
in this case, the time delay may be used more efficiently. For instance, the
length of a computation will be large only in case an error occurred; other-
wis2 the delay will be small. Also, the delay time may be used for error-

diagnosis and error-signalling. As the component units deteriorate in a

large logical system of self-correcting subnets, reliability will not decrease.

However, more time will be needed for computation.

B. THE DESCRIPTION OF THE MODEL

To begin with, we shall confine our attention to nets having a single
output line and arbitrary number of input lines. Each line will be capable
of assuming only one of the two possible values at a time, namely O or 1.

Each net will consist of two parts, as shown in Figure 10.

FORWARD PATH
Xi ——

g > F DELAY
S

DELAY
N
[
I

DELAY —— G

)
FEEDBACK PATH

Fig. 10 The Block Diagram of a Self-Correcting
Net.
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The part F is in the forward path and the part G is in the feedback path.
The delay units represent the intrinsic delays involved in the calculations
of F and G, and in addition, may also have additional periods of delay intro-

duced for the purpose of synchronization with a master controller, or for

whatever other reasons that might exist. The feedback net G is the error-

correcting net. For each input valuation of the net F, the net G will

X
decide whether the input-output pair, (gi,_;i), satisfies a desired logical
function fD and gererate an appropriate control signal, X5 that would con-
dition F suitably for the next calculation. Of course, the net G is also
likely to generate erroneous outputs. However, when z, is correct its value
will indicate whether the pair (gi, yi) is a proper pair or not.

For a given fixed input, gi, the net in FigurelO will produce a compu-
tation (a sequence of calculations) consisting of pairs of outputs (yi, zi).

In this computed sequence, the value of z, in each pair will indicate whether

the corresponding Yi is the correct outpit or not. In general, instead of
keeping the input, gi, fixed it could be encoded into an input sequence and
in this case a 8sub-sequence of the computer output sequence would be the
required, correct output sequence. In the following discussion we shall
assume that the input 51 is in the uncoded form — ji.e. is held fixed for a
given computation. It is our opinion that computation with encoded inputs

would not cause any additional advantage in reliability of operation.

Let the mappings performed by the F and G nets be denoted by the

1

logical functions me+ and me+', where m of the inputs are external inputs,

the (mt1)st being the feedback input:
m+1
£ (R, 2) =y, 3)

The functions F and G may be expanded as follows:
w1 m m -
fF (Ki, zi) = 811(51) 2z, + glz(zi) . zi (5)

£ @y v = 85 &) v, + €& -y, (6)

vt

«' denotes logical AND, '+', logical OR and '-' denotes complementation.
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where the g's are functions of m arguments. To specify completely

the computation performed by such a finite sequential machine it is necessary
to fix a distinguished initial state (namely, the contents of the delay units
at time 0) and an end condition for stopping the calculations. Also, the
sequence of output pairs, (y,z), should be properly indicated as functions of

time.

Assuming that the delay introduced by the delay units in Figure 10 is
of unit magnitude and the net as a whole is periodically activated to perform
a calculation at the beginning of every unit interval of time, the equations

(5) and (6) may be written as follows:
(li) * a1 + aZn(Ki) ) in-l )

and - . . =
Zn bln(zi) Yn-1 + bZn(li) Yn-1 @)

where n = 1, ... is the time parameter, z., Y, are the nth values of the
outputs, and a, , a,.s bIn and b2n represent the 'g' functions of equations
(5) and (6) at the instant n. 1In general, it is thus possible that as n
varies the g functions may also vary. Let us now see how the initial and
final conditions may be specified for the equations (7) and (8) and how the

resultant computation may be used to calculate a desired logical function

£ .

D

The end conditions may be specified in one of two possible ways. One
can fix the length of computation for a given input to be the same number,
N, and specify a rule for selecting the appropriate output from the N
calculations. This, of course, will require additional equipment to perform
the selection; and, further, in this scheme one does not take advantage of the
probabilities of distribution of occurrence of errors to increase the speed
of calculation, In fact, the selection procedure will be consuming additional

time for completing the calculation.

On the other hand, one may decide to terminate the calculations for
a given input, on some criterion depending upon the relative values of the

outputs (y,z). There are only three distinct possibilities in which this

118

:
—

GER I OIF G0 ONE e el pwed el peel bemd eend G Bend b e d




may be done,and these ate*: (Note that the corresponding outputs, as shown

in Figure 9, are always separated by one unit of delay.)

My, = 2=y, = H®

(@) z g = 1 =3, = 5H®

B 2y = 0= = HD.

Permutation of y and z in the above three conditions does not change the

essential nature of the constraints.

In case (1) an external comparator is necessary to determine that Y and
z 4 8Te of the same value and generate the appropriate end signal.
The remaining cases presume the existence of some form of verification within
the net; and, hence, the proper value of z,

+1
terminating signal. 1In all the three cases an erroneous output Yn # fn(g)

may itself be used as the

will be chosen only if both y and z are simultaneously in error. Also, for
a given input, calculations will be continued only as long as there is an
error in the output; and this feature, if properly used, will result in the

saving of time.

In the following discussions we shall consider only cases (2) and (3)
for the end condition, as these seem to take into account more comprehensively
than the rest all the equipment needed for the calculation. It should, of
course, be noted that in our discussions so far, we have implicitly assumed
that there is an external master controller that provides, periodically, the

clocking pulses needed for starting each calculation.

Also, as the length of every computation is not the same, it is necessary
to introduce a facility to gate out the proper result at the termination of
a computation and to gate in a new set of inputs for the next computation.
In cases (2) and (3) of the end condition, the terminating value, z
may be used to start the gating operations at the input and output ends of
the unit. In such an arrangement the terminating value, z,, may also be the
initial value, z, for the next computation. Let the initial value of y,
namely y , be chosen to be the same as the value of the previous output.

Therefore, Y, may be either | or 0. This arrangement eliminates the necessity

%+ The reader may easily verify this assertion.
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for resetting the initial values at the beginning of each computation. The

problem now is to get the conditions on the functions a, o ay

order to calculate a desired function, fD, with the above model of a sequential

net, using the smallest necessary number of calculations. We shall see that
the imposition of the restriction of minimum computational delay forces the

functions a5 b

f » and b, to assume the value of either f:(g) or
f;(g), for all n.

In

C. DETERMINATION OF THE FUNCTIONS a , a ,b , Db
ln 2n 1In 2n

Before proceeding with the analysis let us take stock of the assumptions

we have made so far, and the limitations these assumptions will impose on the

general validity of whatever conclusions we may arrive at.

We have now three requirements on the computation performed by the net
of Figure 10. These are

(i) The net should start each computation from one of the prescribed
initial states. (Notice, however, that each calculation of the net might

start from any one of the four possible initial states).

(ii) A computation is terminated when the end condition is satisfied.
At the termination of a computation the selected output value should be equal
to fD(K).

(iii) In order to minimize computational delay the net should seek to
satisfy the end conditions in each calculation. Also, after termination, the
selected output of the computation must be equal to f:(g).

The initial state of a computation was chosen to be the same as the
terminating state of the previous computation. This was possible because
the terminating state was used only to do the proper gating at the input and
output ends, and not to terminate the operation of the net itself. The other
possibility, namely resetting the initial state to a fixed distinguished
value at the beginning of each computation will require additional equipment
to do the resetting operations. This will only increase the complexity of the
net, thereby reducing its reliability of operation. Therefore, the choice

we made is preferable.
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Out of the three possible ecad conditions, the latter two take into
account, more comprehensiveiy than the first, all the operations that the
net should perform to :omplete a computation. Therefore we shall confine
our attention only to the end conditions (2) and (3). In fact, if an
external comparing device is introduced in the net G of Figurel0d, for the
end condition (1), to generate the terminating signni, then the end condition
(1) will reduce to one of the remaining two conditions. Thus, analysis of
the net for conditions (2) and (3) should exhaust all the possible termi-
nations with which the net might be operated.

The third requirement is necessary to satify the condition that each
computation should be of the shortest possible length. If this requirement
is not imposed, it is not clear a priori, what function the net should
calculate in each operation.*

The operation of the net satisfying the above three requirements, for
the end conditions (2) and (3) is described by tables I and 1I, respectively.

These tables may be read as follows:
Table I:

(i) Design Requirement: Each computation should be of the shortest
possible length.

(ii End Condition: =
) ndition Z =] -y, - fD(gi).

(iii) Initial Condition: Yo = 0O or 1 and z = 1.

Yn 2 BX) Yo Zam &) &) b (X)) b, X))
1 1 1 0 1 W * 0
1 0 0 1 0 * * 1

1 1 1 1 1 1 * %

1 1 o 0 0 o % 0 %

0 0 1 1 0 % 1 % 0

0 0 0 0 1 o ] :

1 0 1 1 ] * 1 v

1 0 0 0 0 * 0 0

* It is likely that the function to be caiculated by a net, in each
calculation, may be determined through some conditions, connected with error

diagnosis. In such a case the requirement that each computation be of the
minimum possible length, will not be satisfied.

i
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Table II:

(1) Design Requirement: Same as Table I

(ii) End Condition: 24" 0 - Y, = fn(gi).

(iii) Initial Condition: Yo = 0 or 1 and z, = 0.
Yn Zn fDQ{-i) Y+t ZaH 4 n(l{'i.) aZn(Ei) l"l n (51) bZn (!i)
0 0 1 1 1 1 %
0 0 0 0 0 0 * 0
1 0 1 1 0 . 1 0 %
1 0 0 0 1 3 0 1 *
0 1 1 1 1 1 % 1
0 1 0 0 0 0 $ ¥ 0
1 1 1 0 1 ¢ 0 3
1 1 ] 0 1 0 e 1 2

Let us first consider the Table I. The first two columns of this
table give the values of the outputs at the instant n, for n = 0, 1, ...
The third column gives the value of fD(Li), for the input X, at the instant

-1
n. The fourth and fifth columns give the expected values of the outputs

at the next instant, to satisfy the requirements that the proper computation

ghould be of the shortest possible length., For these input and output comn-

ditions one may calculate from equations (7) and (8) the values that the functions

'a' and 'b' must assume, for the input X,.

Consider, for cxample, the first row of Table I. For the initial con-
ditions shown, one gets from equations (7) and (8) that for n = T,

Ypor = 83p® =1 9

Zpgy = Dpp(X) = 0 (10)

and .ZT(D and bu.(g) might assume any values whatsoever. As 2oy ™ 0 the
end condition is rn-t satisfied, and, therefore, the net goes through another

122

bea

bk

G0 D W NS e et et




calculation for the same input ;i; only it starts from the initial state,
(y,z) = (1,0), instead of (0,1). The operation of the net, this time, is
described by the last but one row of Table I. The final outputs are, [from
equations (7) and (8)]

Yooz = G2(ra) &) = an

Zpe2 = Pren &) = 1 (12)
and these do not depend on the values assumed by aI(T+I)(§i) and b2(T+l)(£i)’
as indicated by the '*' in the table. The output pair (yT+‘, zT+2) now

satisfies the end condition for Table I and as such the computation is termi-

nated.For other initial states the table is similarly filled in. Table II
is constructed similarly, with the only difference that the end condition

is now different. The following observation concerning the operations shown

in Tables I and II are now pertinent.

1. Comments on Tables I and II
Comment 1 The value, z =1, in Tables I and II fixes the value of

a]n(gi) = fD(gi) for all gi. When z = 0, a'n(gi) would still have the
same value, unless, of course, the net corresponding to a,, was itself
changed by the change in the value of z . However, when z = 0, the output
is independent of aln(gi), as may be verified from equation (7). So one

would find no reason to modify the net of a, as a function of z . Thus,

1n
the net may be kept fixed for all time, n; no additional advantage will be

gained by making the net adjustable.

Similarly z, = 0 fixes the function a,, = fD for all gi and for
all time n, and in this case (zn = 0) the output is independent of a]n(gi).
Therefore, if two separate, identical nets were used, one for a‘n and
another for a, , then depending upon the value of z, the output, Yoe1? will
depend on one or the other of the two nets. The input z may be used to
switch the operation from one net to the other depending upon which one
produced a wrong output. This feature introduces the self-correcting

property in nets of this type.
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Likewise, In = 0, fixes b2n = ED in Table I and b2n = f

yo, = 1, sets b, = £, in Table I and b, = £, in Table TI.

D in Table II;

For these values of 'a' and 'b' functions equations 7 and 8 may be

written, for the end condition (2) as
Yoot = Fp&) -z + £ (X) - 2 (13)

2o g < ) oy FEX) - ¥ (14)

yn-H = kaxj ‘ zn * fD(¥> ' zn (15)
and Zi = fD(g) A + fD(g) * Y, (16)

The use of the same function fD more than once in the above equations signifies

the fact that each value would be calculated by a distinct logical net.

The above values of the functions, to be calculated by each net in
each calculation, were obtained because of the restrictions imposed on the

required values of Y4 and Z in columns 4 and 5 of Tables I and II. The

values of Y4 and z were chosen for each calculation such that the whole

n+1
computation will be terminated with the shortest possible delay, producing
the correct output Yn = f:(&). One may easily verify that the above assign-

ment is the only possible one, that would minimize the length of each

computation.

Comment 2. For no two distinct initial states, (yn, zn) the same

pair of functions (ain’

Therefore, unless an erroneous operation produces at the instant (n + 1)

bjn)’ (1,5 = 1 or 2) is used in the calculations.

the same erroneous outputs as at the instant n, a new calculation is

always done using a new net.

Comment 3. The equations (14)and (6) represent just modulo 2 com-

parison functions, which may be written as
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Z - ?D(p@ Ya (14)a
and 2" fD(g) + Yo (16)a

where & indicates the 'Exclusive OR' operation. The feedback network
therefore, compares the value of Yn with the required value, fD(K), and gives

a command for recalculation whenever y & £,(0.

In fact, in the discussion in section B, on the model shown in Figure 6
we had required of the net some such similar operation. There we said that
the feedback input would condition the net suitably for the next calculation.
The above arguments indicate that the only possible useful conditioning that

may be done will be to give a command for recalculation, possibly using an

alternate net. This conclusion will be valid, of course, only if the require-
ment of minimum computational delay is imposed on the net. At present, it is
not clear, what other general requirement may be substituted in its place.

The initial and final conditions were specified, in a sense, in a very natural
way. In this case, it is clear that there are no other boundary conditions
that could be more profitably used.

We believe that even in the case of computation with encoded inputs
the same conclusion would be valid. However, it is difficult to prove this
conjecture in this generality, because it is not clear what general restric-
tions exist on codes for computation. (In an analogous situation in the case
of communication systems, a well-known set of genergl restrictions on possible

efficient codes for error-correction is provided by the properties of group
codes).

2. Generalization of the Concepts:

The above arguments can be directly extended to the case where there is
more than one output line for each net F and G of Figure 10. Let the output
lines of F be denoted by

Y =y, vy eeoy ), e 21
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and those of G by

z = (z 2y cee 2.}, £ 21,
Let y, and z, denote particular valuations of y and z, where

Y= vy Yoq ooe Yoy

and z, - [z‘i 2y  een zu].
Yy and Ej for i,j = 0,1, ... 2t-l will denote the 2t valuations that y and
z might assume. Let Y, and zJ be the values of a logical function, defined

on y and z as follows:

and Z, =1 - z=

For each pair of output lines Y and Z)» k=1, 2, ..., t their values
Yi (n+1) and z, (n+1) at the instant (n+1) will be given by an equation of
the form¥*
y, (nH) = Z‘ a8, ®.2,m), k=1, ...t an

4=0

2t

—

and 2, (rH) = Z' b (©.Y,0), k=1, ... ¢t (18)
I=0

In the above equations akm(g) and bkm(p are the functions that
generate the Kkth outputs, Y and z, respectively, at the instant
n=0,1, .... For £t =0, 1, and k = | the above equations will reduce to
the form of equations (7)and 8) (In(7)and (8) the subscript k was not necessary).

—

* Z denotes a logical 'OR' summation.
4
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At any instant n, if the output valuations were 1i(n) and gj(n).
0<1i, j <2%-1 then from equations (17) and (18) we get:

Y (n#+l) = .kjn Xyk=1, ... t, 9)
g (@) = b @ik=1, .t (20)

where X would be the input at the instant n. Thus for each pair of output
vectors (xi, Ej) the two nets corresponding to the functions .kjn and bkin
are chosen for calculation, for each k = }, ...t. For the same reasons
discussed in section C.1, comment 1, the functions 'a' and ‘'t may be chosen
to be independent of the time parameter, n. Also, for each k, 1 <k <t
if the desired output function is fnk(g).rhen from requirement we will
obtain that

for all § = 0, 1, ..., 2%-1, and all n = 1, 2, ...

For any given value, xi(n),the value gj(n+l), may be used to indicate
whether xi(n) is correct, and if it is not correct, which one of the 2t-1
possible errors is present in xi(n). In this case, therefore, the design

of the nets corresponding to the functions b, , will depend on the nature

k£
of error diagnosis that is desired. It should be valuable if some general

conditions could be obtained on the specification of the functions bkt'

It is not clear at present, what the error-correcting potential of
this scheme will be, and taking into consideration all the extraneous
control nets, what the overall gain in reliability will be.

The values of the probability of occurrence of a proper computation
and that of an erroneous computation for some typical nets are calculated
in the next section. Also, the expected length of a proper computation,
as well as an improper one, are obtained. We shall discuss the results and
their significance, in detail, in the next section. The following general

comments may be made concerning the scheme, at this moment:

* Minimum computational delay 127
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It is clear that the process of substitution of a new.net in
place of another that generated an erroneous output, indicates that, with
this scheme it should be possible to combat both type | (temporary) and
type 2 (permanent) errors.

Also, there is the possibility of developing error-diagnostic
nets which will prove to be of great value in any large data processing

system.

It appears that if more redundant alternate nets were available
in a net, then greater reliability of operation would be realizable. Also,
the principal concept of substituting an alternate net in place of an erroneous
one, is very elementary in error-correction. The above scheme seems to offer
a patural way of doing this, in practice.

We believe that, the model discussed so far, provides a good context
in which further investigation may be made to understand the process of
self-correction and possibly develop general theoretical concepts on error-
diagnosis and self-repair. We shall be interested in answering questions
of the following nature:

1. For a given number of feedback lines what boundary conditions
will yield the maximum reliability? The selection of an appropriate
boundary condition would be influenced by the following considerations:

The number of additional operations necessary to termi-

nate one computation and start the next computation.

The nature of.error-signalling, if any, that is expected
of the net.

The cost of termination in terms of loss in reliability.

2. If the precise nature of possible errors were known,is there
any significance in changing the logical function for different calculations
in a computation?

In the above discussion we assumed the ‘logical function for each

calculation to be fD(g). By changing the logical function for a given
net, it may be possible to perform error-diagnosis.
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3. In a large net composed of subnets of the form discussed so
far, the total net is essentially asynchronous, because, depending upon
the occurrence of errors, each subnet may take a different time to complete
its computation. This calls for a proper scheduling of each operation or
provision for buffer storages at the input of each subnet. Depending upon
the probabilities of occurrence of errors,a queuing problem arises. The
length of the queue at the input of each subnet will directly be a measure
of the performance of the net. It remains to be seen how this property
can be exploitea to do error-prediction in a systematic way. In the design
of a large net ones aim should be to minimize the length of the queue at
the input of each subnet.

4. In every net of this form a possibility exists that the control
net might fail, causing a computation to be continued indefinitely without
termination. To combat this type of failure one may assign a maximum length
N for each computation. After N calculations, it will, therefore, be neces-
sary to adopt some type of Statistical estimate to choose the correct
output. A study of this will also be a part of a study of self-correcting

system.

These problems arise in a natural way in :the context of the self-
correcting scheme discussed in this report. It is our opinion that a study
of these problems in greater depth would be a worthwhile task.

D. THE ANALYSI¢ OF DYNAMIC BEHAVIOR OF A SELF-CORRECTING NET

The dynamic behavior of a self-correcting net may be
described by the probabilities of occurrence of the following:

(1) A proper computation of length Z£.
(2) An erroneous computation of length £.
(3) A computation being of length greater than £.

Let the respective probabilities of events (1), (2), and (3) be denoted by
Pp(l), (p stands for 'proper'), Pe(t), (e for erroneous) and Pc([), (c for

continuation), The overall performance of the net may be evaluated from:
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P, = 2" P,(£) @1
2=

P, = Z P_(4) (22)
£

where P is the total probability of occurrence of a proper computation of

any length, and so also, Pe, that of an erroneous computation. It is clear
that,

P (2 - 1) = rp(z) + P (2) + P (2), (23)

and, therefore, from equations (21), (22) and (23),

z P(2 - 1) -L P(£) = P(0) =P +EB =1 . (24)
£=1 2=

Also, it is true that

ghts, P (8) =0 (25)

The expected values and variances of the lengths of a proper, as well as an
erroneous computation are of significance in evaluating the performance of
such nets. Let z(zp) and E(le) denote the respective expected values. So
also, let V(lp) and V(le) denote their variances:

[- -]
E(s) = (Z R XOI A X (26)
I=]
JAERORER XOINE S (27)
L=
VL) = (f (2 -E¢) P ()} /P (28)
P 4 P P P
1=1
V() = () (2 - B 2 (53] / B, (29)
2=1
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For given component reliabilities a good design for a self-correcting net
should minimize Pe’ z(zp) and V(lp). Also it will be desirable to have

B(le) > E(lp). (30)

In fact, the most desirable situation will be:

B(le) - V(le) > E(ZP) +/;(zp) (31)

The above conditions will assure us that a proper termination of a compu-

tation is always more likely to occur than an erroreous one.

We shall now discuss the analytical techniques that might be employed
to calculate the above statistical parameters of a self-correcting sequential

net.

1. T rary Errors: e
(a) The Mathematical Model:

In the case of temporary errors the operation of a self-correcting net

may be described by a Markov chain diagram, as shown in Figure 11.

Fig. 11 A Markov chain diagram of a self-
correcting net.
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Each node in this figure represents a possible output state of the net at
an instant, n. A directed branch, between a pair of nodes, indicates a
possible transition, in the direction of the branch, from one output state
at an instant n, to the other at the next instant, n + 1%*. A self-loop
indicates that it is possible to have the same output state at successive
instants of time. The weight on each branch indicates the probability of
occurrence of the transition represented by the branch. The probabilities

g, for £ =0, B, 7y, dand i = 1, 2, 3, 4, in Pigurell, will be functions of
the input of the net at an instant n, and

2 £, = 1 for ¢ =q, B, 7, and ® (32)

Such a net will have a subset of states, say So, called the set of

distinguished initial states. For any input, X, a computation by the net

will always start from one of the distinguished initial states, L € So.
Depending upon the terminating conditions, one or more of the output states

of the diagram will be chosen as the terminating states of the net. A

computation by the net will always terminate in one of the possible termi-
nating sates. Let the set of all possible terminating states be denoted by
ST' A proper computation may be defined in one of the following ways:

Definition 1. (Proper computation):

(1) A computation, whose terminating state spi € S?(z)(: ST’ where

Sp(x) is the subset of proper terminating states, for a desired output y.

(2) A computation having one or more occurrences of certain specially

chosen output states, at certain well-defined places in the computed output

sequence, prior to termination. Let these distinguished intermediate states
be denoted by SI(x), for a desired output y.

(3) A computation satisfying both conditions (1) and (2).

o

* It is assumed that it takes one unit of time to complete a transition.
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Similarly, a subset of terminating states corresponding to an Erroneous

computation may be denoted by Sz(x) Cs Also, a computation may be defined

T
to be erroneous if no state s, € Sl(z) occurs as an intermediate state, at
the proper places, in the course of a computation. The sets Sp(x), 83(1),

SI(x) and ST will satisfy the following set relationships:

Sp (W US, (= S, (33)
%
Sp (W NSy (= ¢ (34)
and S; @ Nsg -0 . (35)

The set, So, of distinguished initial states may be chosen arbitrarily.

For a given input, gi, if fn(gi) = !i(fD is the desired function),
then the probabilities of individual transitions in the Markov chain diagram
of the net will change as a function of 51, such that the probability of
occurrence of a proper computation would be maximized. As the number of
states in the diagram increases the number of possible paths for proper, as
well as an erroneous computation will increase rapidly. The variety of ways
in which the different subsets of equations (33) (34) and (35)may be specified
will be very large too. In such cases, it will be desirable to find some
general conditions on the selection of the subsets that will maximize, P
and satisfy the inequality (31). At present, we do not have a good under-
standing of this problem. However, it is clear that a theory of self-

correcting systems must be capable of answering such questions.

(b) Techniques for Analyzing Model (A)

Convenient techniques for obtaining the probability of occurrence of
a specified event in a stationary Markov chain have been developed by
K. Kaplanls and J. Sklansky of RCA Laboratories. 1In this note we shall
briefly explain their procedures in order that the reader may understand
easily the calculations that are to follow :

A Markov chain diagram may be interpreted as a signal flow graph,
where each branch weight will denote the signal gain provided to the
signal that is transmitted through the path represented by the branch.

* In case the condition 1 of Definition 1 is not used this
property need not be satisfied.
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At each node, the signals coming into the node through the various paths

of the graph are added up and retransmitted through the outgoing paths of
the node. The sum of the incoming signals is always equal to the sum of

the outgoing signals.

In such a graph, if a unit impulse is injected into a node, say No’
from an external source, at time 0, one may calculate, using the z-transform
techniques, the magnitude of the signal that will be present at any given
node, say Ni’ at a given instant, say n, because of signal transmissions
through the various paths of the graph. This magnitude of the signal at
Ni’ at the instant n, will be equal to the probability of occurrence of the
following event, in the corresponding Markov chain:

The event that, in an experiment on the Markov chain, starting at time
0, from a state, say 859 represented by the node No in the graph, the state

85 represented by Ni’ occurs at the instant n.

For a proof of this property and its consequences the reader is

referred to references 18and 19. Using the above property one may obtain

expressions in closed form, in terms of the individual transition probabilities,

for the various probabilities and expected values values introduced in section D,

2. Permanent Errors (Type II)

In the case of a permanent failure of a subnet, the ability of a self-
correcting net to successfully repair the failure will depend upon the number
of alternate subnets that have been provided to the net, a priori. 1In this
case, the calculation of the probability of occurrence of a permanent failure

in the total net is straightforward and no special mathematical techniques
are called for.

In the next section we shall introduce three self-correcting nets and
calculate the various parameters associated with them. These examples are
intended primarily to illustrate the problems involved in the construction
of such nets. Also,an understanding may be obtained of the orders of
magnitude of the different quantities and how they may be changed with changes
in individual output transition probabilities.
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3. Description of Some Typical Self-Correcting Mets

The outputs Yo and z of the net,g, , in Pigure 12 are given by the

equations;
Yo =fp ® -z, + £, -2 (13)
Zh " fD @ - Yn-1 + fD(!) ‘ in-l * (14)
The boxes F‘ and Gl of the net '31 correspond to the F and G boxes of Figure

10. Inside FI and Gl the nets D', D2, D3 and D4 denote the D-nets that

calculate the desired fumction, fn(g). These four nets correspond to the
four occurrences of the function fD(D in equations (13) and (14). Indi-
cating this correspondence more explicitly, equations (13) and (14) may be

rewritten as:

y, = fDl @ -z _,+ fnz(;) . in_' (36)

zn = fD3(D ‘ yn-l + ED‘.(Q : ;'n-l (37)

The gate, marked C in Figurel2 is a complementing gate. The markings
on the other gates are self-explanatory. 1In this net, a typical output
state will be a valuation of the pair (¥,z).The net has, in all, only four
states, viz: (0,0), (0,1), (1,0) and (1,1). The sets so, sr(y) and
sI(y) for y = 0, 1, are:

s, = {(0,1), (1,1]}.
%
s,r (0) = ST(I) = s0
s; (0) = (0,0) (38)
and s; (1) = (1,0).

In this case the terminating condition has been chosen as

a1 = Yy 5@

and, therefore, the terminating state itself is not used to distinguish between

a proper and an erroneous computation. When y = 0, a computation will be

% In this case the condition 1 of Definition | has not been used.
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proper only if the state SI(O) = (0,0) occurs as the last but one state of
the computation. So also, when y = | the state SI(I) = (1,0) should occur
as the last but one state, for a proper computation. An erroneous compu-
tation will occur only if {z“_'_l = | and Y » fD(g)] for some n =1, 2, ... .
The probability of occurrence of this event will give us the first measure
of reliability of the net, ‘}, .
Let®

p'(Dj) =q, j=1, 2, 3, 4 (39)

be the first measure of unreliability for the nets Dj, j=1, 2, 3, 4 in
Figure 12, So also, let

P'(&) = p'(OR) = p'(C) = B (40)

be the first measure of unreliability of the other gates in Figurel2, that
belong to the control part of the self-correcting net. One can show that

the first measure of unreliability of the net F, will be:

1

p'(Fl) < (a+38) = €, say. (41)

For the purpose of our calculations we shall choose the upper bound €, as

equal to p'(F').

The net Gl may cause two types of errors, type A and type B:

Type A: 1is the event w*

[zn+l = o|yn = fb(z)] :

This causes arecalculation even though Yo = fn(g), thereby increasing the
length of a computation. This type of error does not directly cause an

erronecus computation. Let us denote the probability of this event by €

p'(Dj) = H:x p; where p; is defined by:

= fn(gi) with probability Py
= fn(gi) with probability (l-pi)

for the input, gi.

#% To be read as z 4 = 0 given that y = fD(K)'
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Type B: is the event
[zn+] = ' I yn * fD(K)}'

This error causes the computation to be erroneous. Let, €p’ be the proba-

bility of this event.

For the net Gl the probabilities of occurrence of these two events
can be shown to be:

Plz =0y =£,@®]) =Pz, =1y ¥E®)<e, (D)
We shall choose in our ensuing calculations
P'(F) = p'(G) = ¢, (43)
for the net '},, of Figure 12,

The net 32 in Figure 13 is a modified form of the net in Figure 12.
In 3’2, greater redundancy has been introduced in the calculation of a nl’

1 2
Zat+t T Zndl T Ead (44)
where 2! = x)- +E X -5 45
n+] D3 .Y yn D‘. = yn (45)
22 £ (X)- +E @ ¢y
n+i D, "= Yn D3(-) n (46)

In this scheme, for a given value of Yn both D3 and Da will be used

to calculate Ze If one of the quantities z:“, i=1, 2, indicate that

Yo is erroneous (i.e., z'irH = 0 for { = | or 2) the computation will be

continued, A termination will occur if and only if both z:‘_ﬂ and z:

=1 .

+1
For this net,

P'(Fy)) = ¢ (47)
and Pz ., -OIYn'fD(K))<€,(' - 28)2 - €) +p=c¢, say, (48)
P(:n_H =1 lyn = £,(0]) < elz(l ~2B8)+p= €y say, (49)
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where € is defined in equation 41. One may notice that B K €, Thus,
in this case, calculations in a computation are likely to be more often

continued than be terminated erroneously.

In Pigures 12 and 13 the feedback input, z, to the F-nets, actually
selects an output from one of the two D nets, D, and Dz. This selection
process involves the use of additional gates that reduce the first measure
of reliability of the output*, y, from a at the output of the D-nets to
nearly (a + 38) at the output of the delay unit (reference to equations (39)
to(41). In any scheme involving the use of alternate nets the selection
process of the outputs cannot be avoided. However, pact of the selection
may be done at the input end of the D-nets, as shown in Figure l43. In this
figure the input, z, is used to activate at a time only one of the two nets:
D, when z = 1 and D2 when z = 0. When a net is not activated its output

ot

may be assumed to be zero *. Thus the output of the 'OR' gate in Figure

14 a will be the same as the output of the net that had been activated. Or
else, the scheme shown in Figure 14b may be used, where a switch has been

employed to select the appropriate output. If the probability of both D
and D

1
2 being unactivated is Y and the probability of the switches (or the

Fig. 14 Illustrating the use of z as an
actuating signal.

Note that the reliability of a net is considered to be the same as the
reliabilicy of its output.

In a typical net, in practice, the activation of a net may be caused by
providing the power supply necessary to operate a net. When no power
is supplied to a net, its output has to be zero in the steady state.
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OR gate) making a wrong selection is B, then the first measure of reliability
of the output y will less than (@ + B + y). If more than one feedback line
were available then more than one D net may be actuated in each calculation.
In such a case, the output selection may be more profitably done by a ma- -
jority gate instead of an OR gate or a switch. The use of a majority gate
for output selection will result in a considerable improvement in reliability.
Table III is a summary of the different probabilities of F and G units in
Figures 12 and 13.

Table III: The Probabilities Associated with the Subnets
of Figures 12 and 13,
§Subnet Probability
H
D, p'(Di) = (o for all i
Any control
. gate:&, OR, p'(&) = B
C, etc.
F, of Fig. 12 p'(F) < €, =a+3p
o! < - = =
Gl of Pig. 12 P (Gl) - q € eB a+ 38
' F, of Pig. 13 P'(F) S € =a+3p
: <
- G, of Fig. 13 Pz, = O | Yo = @) = €, = €,(1-28)(2-¢)) + B
< 2
Plz o= 1y, % £,0) 7 eg = €;(1-28) + 8

4, Analysis of the Nets Described in Sectiom 3,

The Markov chain diagram for the nets ?l and 3; of Figures 12 and 13
will be as shown in Figurel5. The transition probabilities, shown in
Figure 15 are for the case: fn(g) = | and initial state, (0,1).
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Fig. 15 Markov chain diagram for the nets 71 and '32
for the case: Initial state (0,1) and f1(§1) =1,

The probabilities €> € €p in Figure 15 are given in Table III and 1, © are
given by:

n=1 - (el +egte en) (53)
and

b=1 - (eI +te +¢ ¢ €,) (54)

The probabilities n and & indicate the correct transitions, ar given in

Table I, for the case, fn(g) =] (rows 1, 3, 5, and 7 of the table). The
weight ¢, indicates an erroneous transition -- not as required by Table 1
-- where the output, y, in the 'next state' is in error. The weights €2
and g indicate that the outputs z in the 'next states' are in error, the
errors being of type A in one case, and type B* in the other. The weights
€ € and € * €p indicate that both y and z are in error in the 'next

states' of the transitions. As the state, (1,1), in Pigure 15 will always

be a terminating state, no transitions are shown emanating from the state.

Using Table I and the error-probabilities shown in Table III the

*
See Table III for definition of €\ and €p°
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Markov chain diagram for any initial state and output value may be similarly
drawn. In Figure 15, for example, if the states (1,0), (0,0) are transposed
and, so also, (1,1), (0,1) are transposed the resulting diagram will repre-
sent the case: fD(K) = 0 and initial state, (1,1). One may verify that

the basic structure of the diagram for all possible initial and output states
remains the same. Thus, the probabilities of proper, and erroneous compu-

tations calculated for Figurel5 will remain unchanged for other cases also.

Using the z-transform techniques and the analogy of signal flow graphs,
one may obtain the following expression for the different statistical quanti-
ties associated with the Markov chain diagram of Figure 15. Let,

ZJ P () - 2t 3;(z) (55)
=2

and
24 P;(z) ezt . f;(z)_ (56)
=2

Astsuming that the length of each computation is > 2, we get that,
P(1)=P 7
P P G7)
and

A
Py =p, (58)

For the Figure 15,

-1
nz (B+¢)
f;(z) - ! (59)

-1 1 -2
(I-e‘ 2 )(l-eA z) -1 € €, 2

e 27 (¢, 27 (1-n)) eg(l + )

P(z) = - ~ (60)
€ (l-el z ')(l-eA z l) - € €M z-2
2 - €, - €
1 A
E(lp) 1-€, - €, + ¢, ¢, (1-m) (61)
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€ + € - € €, (l-n)(d-el - eA)

V(£ ) = > (62)
P (l-eI - €, + € € -1
1-¢, (1-n)(2-¢,)
Ble) = 1+ e, G-m0e, - 6, 7 ¢ 0-1) (63) |
2 2
€, +'¢, (57-4) - 8¢ 1-1)
vee,) = -4 4 (64)

(l-eB (l-n))2 (l-el T €, eA(l-q))2

The values of Pp(z) have been plotted in Figure 16 for various values

of the parameters @ and k where,

k = a/p, (65)

« and B are defined in Table III. In a sense, 'k' is a measure of the
relative complexity of the D-nets in Figures 12 and 13 as compared to the
individual control gates -- AND, OR or C. The larger the value of k is, one
may say that the greater would be the complexity of the D-nets as compared
to the individual AND, OR or C gates. One may notice that in the net,EFz,

the computations tend to be longer.

The values of Pp, Pe, E(lp) and E(ze) are tabulated in Table IV. One
may notice that for k = 1, there is a loss in reliability for a = .05. When
k = 10 the gain in reliability is ignificant. Also, in all cases the net,

35, gives greater improvement in reliability at the cost of increased

average delay time for computation.

It may also be seen that in all cases E(le) > E(lp). This does not
satisfy the condition given in inequality (30). It remains to be seen
whether it is possible to satisfy (30) through the use of this scheme of
self-correction, and if it is, what the requirements on the feedback net

will be.
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Table IV: Calculated Values of P_, Pe’ E(lp) and E([e)

P
pp P, z(zp) E(2,) ?
a k K
1 2 1 2 1 2 1 2 3
0.05 {1 .91095 .96743 .08905 [.03257 |2.5906(3.0050]2.4942(2.6846
10 |.9945 .99952 .0055 .00048 |2.148 |2.236 [2.139 [2.209
100 | .99967 .99996 .00033 |.00006 |2.114 [2.117 |2.108 [2.1613
0.01 |1 .99981 .999949 .00019 |[.000051 [2.086 {2.144 {2,083 [2.134
4 5

10 |.999983 | .999986 A7x107 7 |.14x10 7] 2.026 |2.041 |2.026 |2.040

100 | .999989 | .999999 | .11x107%].10x1073| 2-021 |2.031 |2.020 12.031
0.001 |1 |.999984 | .999995 | .16x107%|.41x1073] 2.008 |2.013 |2.008 |2.013
5 6

10 |.999998 |.9999999 | .17x10 ~[.13x10 "} 2.002 [2.004 |2.002 {2.004

100 | .9999989 | .99999999 .HxlO-5 .leIO.7 2.002 (2.003 |2.002 {2.003

The nets 31 and '}2 of Figures 12 and 13 respectively, do not provide
much protection against permanent failures. No redundant gates have been
provided in the control network. As the control gates are simple AND, OR
gates, one may introduce redundant gates through the 'triangulation' scheme
of Levy16 and Amarel.15 Let us assume that such a scheme has been used and
the probability of permanent failure of the control part of the F and G

nets is, p'"(c), in '3’1 and '32.

let us now consider the failure of one of the D-nets. In the F-nets
of both Figures 12 and 13 failure of either Dl or D2 will not cause a failure
of the total F-net. The self-correcting feature -- namely, the substitution
of an alternate net in place of an erroneous one -- will assure us of the
correct output in each computation. Thus the F-nets of qi and ?é will fail
only if both D' and D2 fail, or the control part of the net fails. There-

w
fore,

% p'" is the second measure of unreliability.
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p" (F) = (p"() + p"(C), 1 =1, 2 (66)

for the nets ﬁﬁ and q;’

In the case of the G-nets of ?ﬁ and g%, failure of either D3 or D4
will cause a failure of self-correcting property. Further, if z gets stuck

at 0, no computation will ever terminate. So,

P" (G)) = p"(D) + P"(C), 1 =1, 2 67)

However, when D3 fails the nets Eﬁ and H; will operate properly for

the output y = 1, and also, when D4 fails, proper operation will be available
for y = 0. Unless z gets stuck at 0O the overall nets ?l and 93 may still be
used, even though the self-correcting feature will be absent for some outputs.
The probability of z getting stuck at O will be less than p''(D) + p"(C). Thus,
some improvement will be obtained in the overall reliability of the nets ?I
and #2. In general, one may choose a weighted sum of p"(Fi) and p"(Gi) for

(%), 1=, 2

p"(J) = g PU(FD + € * p"(G,) (68)

for i = 1, 2, where g = 1 and e < 1, are constant coefficients.
i i

The above discussion was intended only to illustrate the techniques
of calculation and relative values of the various parameters that may be

associated with a self-correcting net.

One may intuitively see that there exists a great variety of possi-
bilities in which such nets may be constructed when the number of feedback
lines is large. A greater understanding of the subject will have to be
developed before a definite conclusion may be made about the practical

applicability of the scheme of self-correction, introduced in this report.
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